1.Effects of honey-processed Astragalus on energy metabolism and polarization of RAW264.7 cells
Hong-chang LI ; Ke PEI ; Wang-yang XIE ; Xiang-long MENG ; Zi-han YU ; Wen-ling LI ; Hao CAI
Acta Pharmaceutica Sinica 2025;60(2):459-470
In this study, RAW264.7 cells were employed to investigate the effects of honey-processed
2.Mitochondrial Function and Regulation in Spermatogenesis and Activation of Caenorhabditis elegans
Zhan-Xin CHANG ; Long MIAO ; Peng WANG
Progress in Biochemistry and Biophysics 2025;52(7):1661-1672
Mitochondria play a pivotal role in spermatogenesis and sperm activation in Caenorhabditis elegans, serving as the primary ATP supplier for cell division and differentiation while also acting as a key regulator of zinc ion homeostasis, membrane dynamics, and apoptotic signaling. This review systematically summarizes the essential mitochondrial mechanisms at different stages of sperm development, highlighting their multifaceted contributions beyond energy metabolism. Mitochondria are crucial for maintaining the health and stability of the gonads by regulating key apoptotic execution proteins that facilitate the proper elimination of damaged or unnecessary germ cells. Additionally, mitochondria dynamically adjust their energy supply to meet the metabolic demands of different stages of germline development. During early spermatogenesis, mitochondria provide ATP to fuel mitotic and meiotic divisions, support cellular differentiation, and regulate H+ and Zn2+ exchange to maintain cytoplasmic homeostasis, thereby ensuring the proper maturation and functionality of sperm cells. As spermatogenesis progresses, mitochondria participate in processing and sorting essential sperm proteins, such as major sperm protein (MSP), and contribute to the formation of membranous organelles (MOs), which are critical for subsequent activation events. During sperm activation, mitochondria play a dual role in ensuring a successful transition from immotile spermatids to fully functional spermatozoa. First, they provide ATP to facilitate pseudopod formation, MO fusion, and ion channel regulation, all of which are essential for sperm motility and fertilization potential. Second, mitochondria regulate the quality and quantity of functional mitochondria within sperm cells through mitopherogenesis—a recently discovered process in which mitochondrial vesicles are selectively released, ensuring that only healthy mitochondria are retained. This quality-control mechanism optimizes mitochondrial function, which is crucial for sustaining sperm motility and longevity. Beyond their traditional role in energy metabolism, mitochondria may also contribute to protein synthesis during spermatogenesis and activation. Recent evidence suggests that mitochondrial ribosomes actively translate specific proteins required for sperm function, challenging the long-standing belief that spermatozoa do not engage in de novo protein synthesis after differentiation. This emerging perspective raises important questions about the role of mitochondria in regulating sperm activation at the molecular level, particularly in modulating oxidative phosphorylation (OXPHOS) protein composition to optimize ATP production. In summary, mitochondria serve as both the central energy hub and a crucial regulatory factor in sperm activation, metabolic homeostasis, and reproductive success. Their involvement extends beyond ATP generation to include apoptotic regulation, ion homeostasis, vesicle-mediated mitochondrial quality control, and potential contributions to protein synthesis. Understanding these mitochondrial functions in C. elegans not only deepens our knowledge of nematode reproductive biology, but also provides valuable insights into broader mechanisms governing mitochondrial regulation in germline cells across species. These findings open new avenues for future research into the interplay between mitochondria, energy metabolism, and sperm function, with potential implications for reproductive health and fertility studies.
3.PES1 Repression Triggers Ribosomal Biogenesis Impairment and Cellular Senescence Through p53 Pathway Activation
Chang-Jian ZHANG ; Yu-Fang LI ; Feng-Yun WU ; Rui JIN ; Chang NIU ; Qi-Nong YE ; Long CHENG
Progress in Biochemistry and Biophysics 2025;52(7):1853-1865
ObjectiveThe nucleolar protein PES1 (Pescadillo homolog 1) plays critical roles in ribosome biogenesis and cell cycle regulation, yet its involvement in cellular senescence remains poorly understood. This study aimed to comprehensively investigate the functional consequences of PES1 suppression in cellular senescence and elucidate the molecular mechanisms underlying its regulatory role. MethodsInitially, we assessed PES1 expression patterns in two distinct senescence models: replicative senescent mouse embryonic fibroblasts (MEFs) and doxorubicin-induced senescent human hepatocellular carcinoma HepG2 cells. Subsequently, PES1 expression was specifically downregulated using siRNA-mediated knockdown in these cell lines as well as additional relevant cell types. Cellular proliferation and senescence were assessed by EdU incorporation and SA-β-gal staining assays, respectively. The expression of senescence-associated proteins (p53, p21, and Rb) and SASP factors (IL-6, IL-1β, and IL-8) were analyzed by Western blot or qPCR. Furthermore, Northern blot and immunofluorescence were employed to evaluate pre-rRNA processing and nucleolar morphology. ResultsPES1 expression was significantly downregulated in senescent MEFs and HepG2 cells. PES1 knockdown resulted in decreased EdU-positive cells and increased SA‑β‑gal-positive cells, indicating proliferation inhibition and senescence induction. Mechanistically, PES1 suppression activated the p53-p21 pathway without affecting Rb expression, while upregulating IL-6, IL-1β, and IL-8 production. Notably, PES1 depletion impaired pre-rRNA maturation and induced nucleolar stress, as evidenced by aberrant nucleolar morphology. ConclusionOur findings demonstrate that PES1 deficiency triggers nucleolar stress and promotes p53-dependent (but Rb-independent) cellular senescence, highlighting its crucial role in maintaining nucleolar homeostasis and regulating senescence-associated pathways.
4.The Near-infrared II Emission of Gold Clusters and Their Applications in Biomedicine
Zhen-Hua LI ; Hui-Zhen MA ; Hao WANG ; Chang-Long LIU ; Xiao-Dong ZHANG
Progress in Biochemistry and Biophysics 2025;52(8):2068-2086
Optical imaging is highly valued for its superior temporal and spatial resolution. This is particularly important in near-infrared II (NIR-II, 1 000-3 000 nm) imaging, which offers advantages such as reduced tissue absorption, minimal scattering, and low autofluorescence. These characteristics make NIR-II imaging especially suitable for deep tissue visualization, where high contrast and minimal background interference are critical for accurate diagnosis and monitoring. Currently, inorganic fluorescent probes—such as carbon nanotubes, rare earth nanoparticles, and quantum dots—offer high brightness and stability. However, they are hindered by ambiguous structures, larger sizes, and potential accumulation toxicity in vivo. In contrast, organic fluorescent probes, including small molecules and polymers, demonstrate higher biocompatibility but are limited by shorter emission wavelengths, lower quantum yields, and reduced stability. Recently, gold clusters have emerged as a promising class of nanomaterials with potential applications in biocatalysis, fluorescence sensing, biological imaging, and more. Water-soluble gold clusters are particularly attractive as fluorescent probes due to their remarkable optical properties, including strong photoluminescence, large Stokes shifts, and excellent photostability. Furthermore, their outstanding biocompatibility—attributed to good aqueous stability, ultra-small hydrodynamic size, and high renal clearance efficiency—makes them especially suitable for biomedical applications. Gold clusters hold significant potential for NIR-II fluorescence imaging. Atomic-precision gold clusters, typically composed of tens to hundreds of gold atoms and measuring only a few nanometers in diameter, possess well-defined three-dimensional structures and clear spatial coordination. This atomic-level precision enables fine-tuned structural regulation, further enhancing their fluorescence properties. Variations in cluster size, surface ligands, and alloying elements can result in distinct physicochemical characteristics. The incorporation of different atoms can modulate the atomic and electronic structures of gold clusters, while diverse ligands can influence surface polarity and steric hindrance. As such, strategies like alloying and ligand engineering are effective in enhancing both fluorescence and catalytic performance, thereby meeting a broader range of clinical needs. In recent years, gold clusters have attracted growing attention in the biomedical field. Their application in NIR-II imaging has led to significant progress in vascular, organ, and tumor imaging. The resulting high-resolution, high signal-to-noise imaging provides powerful tools for clinical diagnostics. Moreover, biologically active gold clusters can aid in drug delivery and disease diagnosis and treatment, offering new opportunities for clinical therapeutics. Despite the notable achievements in fundamental research and clinical translation, further studies are required to address challenges related to the standardized synthesis and complex metabolic behavior of gold clusters. Resolving these issues will help accelerate their clinical adoption and broaden their biomedical applications.
5.Oxocrebanine inhibits proliferation of hepatoma HepG2 cells by inducing apoptosis and autophagy.
Zheng-Wen WANG ; Cai-Yan PAN ; Chang-Long WEI ; Hui LIAO ; Xiao-Po ZHANG ; Cai-Yun ZHANG ; Lei YU
China Journal of Chinese Materia Medica 2025;50(6):1618-1625
The study investigated the specific mechanism by which oxocrebanine, the anti-hepatic cancer active ingredient in Stephania hainanensis, inhibits the proliferation of hepatic cancer cells. Firstly, methyl thiazolyl tetrazolium(MTT) assay, 5-bromodeoxyuridine(BrdU) labeling, and colony formation assay were employed to investigate whether oxocrebanine inhibited the proliferation of HepG2 and Hep3B2.1-7 cells. Propidium iodide(PI) staining was used to observe the oxocrebanine-induced apoptosis of HepG2 and Hep3B2.1-7 cells. Western blot was employed to verify whether apoptotic effector proteins, such as cleaved cysteinyl aspartate-specific protease 3(c-caspase-3), poly(ADP-ribose) polymerase 1(PARP1), B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), Bcl-2 homologous killer(Bak), and myeloid cell leukemia-1(Mcl-1) were involved in apoptosis. Secondly, HepG2 cells were simultaneously treated with oxocrebanine and the autophagy inhibitor 3-methyladenine(3-MA), and the changes in the autophagy marker LC3 and autophagy-related proteins [eukaryotic translation initiation factor 4E-binding protein 1(4EBP1), phosphorylated 4EBP1(p-4EBP1), 70-kDa ribosomal protein S6 kinase(P70S6K), and phosphorylated P70S6K(p-P70S6K)] were determined. The results of MTT assay, BrdU labeling, and colony formation assay showed that oxocrebanine inhibited the proliferation of HepG2 and Hep3B2.1-7 cells in a dose-dependent manner. The results of flow cytometry suggested that the apoptosis rate of HepG2 and Hep3B2.1-7 cells increased after treatment with oxocrebanine. Western blot results showed that the protein levels of c-caspase-3, Bax, and Bak were up-regulated and those of PARP1, Bcl-2, and Mcl-1 were down-regulated in the HepG2 cells treated with oxocrebanine. The results indicated that oxocrebanine induced apoptosis, thereby inhibiting the proliferation of hepatic cancer cells. The inhibition of HepG2 cell proliferation by oxocrebanine may be related to the induction of protective autophagy in hepatocellular carcinoma cells. Oxocrebanine still promoted the conversion of LC3-Ⅰ to LC3-Ⅱ, reduced the phosphorylation levels of 4EBP1 and P70S6K, which can be reversed by the autophagy inhibitor 3-MA. It is prompted that oxocrebanine can inhibit the proliferation of hepatic cancer cells by inducing autophagy. In conclusion, oxocrebanine inhibits the proliferation of hepatic cancer cells by inducing apoptosis and autophagy.
Humans
;
Apoptosis/drug effects*
;
Autophagy/drug effects*
;
Cell Proliferation/drug effects*
;
Hep G2 Cells
;
Liver Neoplasms/genetics*
;
Carcinoma, Hepatocellular/genetics*
;
Caspase 3/genetics*
6.Studies on common irritant components in three different base sources of Polygonati Rhizoma.
Yu-Xin GU ; Hong-Li YU ; Min SHEN ; Xin-Zhi WANG ; Kui-Long WANG ; Jie CAO ; Qian-Lin CHEN ; Yan-Qing XU ; Chang-Li SHEN ; Hao WU
China Journal of Chinese Materia Medica 2025;50(12):3223-3231
To explore the common irritant components in different base sources of Polygonati Rhizoma(PR). A rabbit eye irritation experiment was conducted to compare the irritant effects of raw products of Polygonatum kingianum, P. officinale, and P. multiflorum. The irritant effects of different solvent extraction parts and needle crystals of PR were compared, and the irritant components were screened. The morphology and structure of the purified needle crystal of PR were observed by microscope and scanning electron microscope and characterized by X-ray diffraction. Rabbit eye irritation and mouse abdominal inflammation model were used to evaluate rabbit eye irritation scores, inflammatory mediators, inflammatory factors levels in the peritoneal exudate of mice, with the peritoneal pathological section used as indicators. The inflammatory effect of needle crystals of PR was studied, and the content of calcium oxalate in three kinds of PR was determined by HPLC. The common protein in three kinds of PR was screened and compared by double enzymatic hydrolysis in solution combined with mass spectrometry. The results showed that three kinds of PR raw products had certain irritant effects on rabbit eyes, among which P. kingianum had the strongest irritant effect. There were no obvious irritant effects in the different solvent extraction parts of P. kingianum. Compared with the blank group, the needle crystal of PR had a significant irritant effect on rabbit eyes, and the inflammatory mediators and inflammatory factors in the peritoneal exudate were significantly increased(P<0.05) in a dose-dependent manner. Meanwhile, the peritoneal tissue of mice was damaged with significant inflammatory cell infiltration after intraperitoneal injection of needle crystal, indicating that needle crystal had an inflammatory effect. Microscope and scanning electron microscope observations showed that the needle crystals of PR were slender, with a length of about 100-200 μm and sharp ends. X-ray diffraction analysis showed that the needle crystals of PR were calcium oxalate monohydrate crystals. The results of HPLC showed that the content of calcium oxalate in P. kingianum was the highest among the three kinds of PR. It was speculated that the content of needle crystal in P. kingianum was higher than that in P. officinale and P. multiflorum, which was consistent with the results of the rabbit eye irritation experiment. The results of mass spectrometry showed that ribosome inactivating protein and mannose/sialic acid binding lectin were related to inflammation and cell metabolism in all three kinds of PR. There was no obvious irritant effect in different solvent extracts of PR. The calcium oxalate needle crystal contained was the main irritant component of PR, and three kinds of PR contained common ribosome inactivating protein and mannose/sialic acid binding lectin, which may be related to the inflammatory irritant effect of PR.
Animals
;
Rabbits
;
Mice
;
Polygonatum/chemistry*
;
Drugs, Chinese Herbal/toxicity*
;
Rhizome/chemistry*
;
Male
;
Eye/drug effects*
;
Female
;
Humans
7.Mechanism of Tougu Xiaotong Capsules regulating Malat1 and mi R-16-5p ceRNA to alleviate "cholesterol-iron" metabolism disorder in osteoarthritis chondrocytes.
Chang-Long FU ; Yan-Ming LIN ; Shu-Jie LAN ; Chao LI ; Zi-Hong ZHANG ; Yue CHEN ; Ying-Rui TONG ; Yan-Feng HUANG
China Journal of Chinese Materia Medica 2025;50(15):4363-4371
From the perspective of competitive endogenous RNA(ceRNA) constructed by metastasy-associated lung adenocarcinoma transcript 1(Malat1) and microRNA 16-5p(miR-16-5p), the improvement mechanism of Tonggu Xiaotong Capsules(TGXTC) on the imbalance and disorder of "cholesterol-iron" metabolism in chondrocytes of osteoarthritis(OA) was explored. In vivo experiments, 60 8-week-old C57BL/6 mice were acclimatized and fed for 1 week and then randomly divided into two groups: blank group(12 mice) and modeling group(48 mice). The animals in modeling group were anesthetized by 5% isoflurane inhalation, which was followed by the construction of OA model. They were then randomly divided into model group, TGXTC group, Malat1 overexpression group, and TGXTC+Malat1 overexpression(TGXTC+Malat1-OE) group, with 12 mice in each group. The structural changes of mouse cartilage tissues were observed by Masson staining after the intervention in each group. RT-PCR was employed to detect the mRNA levels of Malat1 and miR-16-5p in cartilage tissues. Western blot was used to analyze the protein expression of ATP-binding cassette transporter A1(ABCA1), sterol regulatory element-binding protein(SREBP), cytochrome P450 family 7 subfamily B member 1(CYP7B1), CCAAT/enhancer-binding protein homologous protein(CHOP), acyl-CoA synthetase long-chain family member 4(ACSL4), and glutathione peroxidase 4(GPX4) in cartilage tissues. In vitro experiments, mouse chondrocytes were induced by thapsigargin(TG), and the combination of Malat1 and miR-16-5p was detected by double luciferase assay. The fluorescence intensity of Malat1 in chondrocytes was determined by fluorescence in situ hybridization. The miR-16-5p inhibitory chondrocyte model was constructed. RT-PCR was used to analyze the levels of Malat1 and miR-16-5p in chondrocytes under the inhibition of miR-16-5p. Western blot was adopted to analyze the regulation of TG-induced chondrocyte proteins ABCA1, SREBP, CYP7B1, CHOP, ACSL4, and GPX4 by TGXTC under the inhibition of miR-16-5p. The results of in vivo experiments showed that,(1) compared with model group, TGXTC group exhibited a relatively complete cartilage layer structure. Compared with Malat1-OE group, TGXTC+Malat1-OE group showed alleviated cartilage surface damage.(2) Compared with model group, TGXTC group had a significantly decreased Malat1 mRNA level and an increased miR-16-5p mRNA level in mouse cartilage tissues(P<0.01).(3) Compared with the model group, the protein levels of ABCA1 and GPX4 in the cartilage tissue of mice in the TGXTC group increased, while the protein levels of SREBP, CYP7B1, CHOP and ACSL4 decreased(P<0.01). The results of in vitro experiments show that,(1) dual-luciferase was used to evaluate that miR-16-5p has a targeting effect on the Malat1 gene.(2)Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group had an increased mRNA level of miR-16-5p and an decreased mRNA level of Malat1(P<0.01).(3) Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group exhibited increased expression of ABCA1 and GPX4 proteins and decreased expression of SREBP, CYP7B1, CHOP, and ACSL4 proteins(P<0.01). The reasults showed that TGXTC can regulate the ceRNA of Malat1 and miR-16-5p to alleviate the "cholesterol-iron" metabolism disorder of osteoarthritis chondrocytes.
Animals
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Chondrocytes/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice, Inbred C57BL
;
Mice
;
Osteoarthritis/drug therapy*
;
Iron/metabolism*
;
Male
;
Cholesterol/metabolism*
;
Humans
;
Capsules
;
RNA, Competitive Endogenous
8.Mechanism of Tougu Xiaotong Capsules in alleviating glycolytic metabolism disorder of chondrocytes in osteoarthritis by modulating circFOXO3.
Chang-Long FU ; Yan LUO ; Jia-Jia XU ; Yan-Ming LIN ; Qing LIN ; Yan-Feng HUANG
China Journal of Chinese Materia Medica 2025;50(16):4641-4648
From the perspective of circular RNA forkhead box protein O3(circFOXO3) regulating glycolysis in osteoarthritis(OA) chondrocytes, this study investigated the mechanism by which Tougu Xiaotong Capsules(TGXTC) alleviated OA degeneration. In in vivo experiments, after randomized grouping and relevant interventions, morphological staining was used to observe structural changes in cartilage tissue. The mRNA level of circFOXO3 in cartilage tissue was detected by real-time quantitative PCR(RT-qPCR). Western blot analysis was used to detect changes in the expression of glucose transporter 1(GLUT1), hexokinase 2(HK2), pyruvate kinase M2(PKM2), lactate dehydrogenase A(LDHA), and matrix metalloproteinase 13(MMP13). In in vitro experiments, fluorescence in situ hybridization(FISH) was used to detect circFOXO3 expression in chondrocytes from each group. A lentiviral vector was used to construct circFOXO3-silenced(sh-circFOXO3) chondrocytes. RT-qPCR was used to analyze the changes in circFOXO3 levels after silencing, and Western blot was used to assess the regulatory effects of TGXTC on GLUT1, HK2, PKM2, LDHA, and MMP13 proteins in interleukin-1β(IL-1β)-induced chondrocytes under sh-circFOXO3 conditions. Masson staining and alcian blue staining results showed that the cartilage layer structure in the TGXTC and positive drug groups was improved compared with that in the model group. The mRNA level of circFOXO3 was significantly upregulated in both the TGXTC and positive drug groups, while the expression of the above-mentioned proteins was significantly reduced. FISH results showed that TGXTC upregulated the fluorescence intensity of circFOXO3 in IL-1β-induced chondrocytes. In the circFOXO3 silencing experiment, compared with the IL-1β group, circFOXO3 levels in the IL-1β + sh-circFOXO3 group were significantly decreased. Compared with the IL-1β + TGXTC group, circFOXO3 levels were significantly reduced in the IL-1β + sh-circFOXO3 + TGXTC group. Western blot results indicated that the elevated levels of GLUT1, HK2, PKM2, LDHA, and MMP13 proteins in chondrocytes of the IL-1β group were significantly inhibited by TGXTC intervention. However, this regulatory effect was attenuated after circFOXO3 silencing. In conclusion, TGXTC alleviate glycolytic metabolism disorder in OA chondrocytes and delay OA degeneration by regulating circFOXO3.
Chondrocytes/metabolism*
;
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
RNA, Circular/metabolism*
;
Osteoarthritis/genetics*
;
Glycolysis/drug effects*
;
Humans
;
Forkhead Box Protein O3/metabolism*
;
Male
;
Capsules
;
Matrix Metalloproteinase 13/genetics*
9.Comparison of short-term clinical efficacy between CO external fixation and internal fixation with steel plate in the treatment of unstable distal radius fractures.
Min-Rui FU ; Chang-Long SHI ; Yong-Zhong CHENG ; Ming-Ming MA ; Zheng-Lin NIU ; Hai-Xiang SUN ; Jing-Hua GAO ; Zhong-Kai WU ; Yi-Ming XU
China Journal of Orthopaedics and Traumatology 2025;38(1):10-17
OBJECTIVE:
To evaluate the short-term clinical efficacy of external fixation and internal fixation with steel plate in the treatment of unstable distal radius fractures (AO-23C type), based on the principles of Chinese osteosynthesis (CO).
METHODS:
Forty-eight patients with unstable distal radius fractures between January 2022 and February 2023 were retrospectively analyzed and divided into the CO external fixation group and internal fixation group. CO external fixation group consisted of 25 patients, including 7 males and 18 females, aged from 37 to 56 years old with an average of ( 52.6±11.3) years old. Among them, there were 7 patients of traffic accidents and 18 patients of falls, resulting in a total of 25 patients of closed fractures and no open fractures, the treatment was conducted using closed reduction and CO external fixation. The internal fixation group consisted of 23 patients, comprising 8 males and 15 females, age ranged from 41 to 59 years old, with an average age of(53.3±13.7) years old. Among them, 8 patients resulted from car accidents while the remaining 15 patients were caused by falls. All 23 patients were closed fractures without any open fractures observed. The technique of open reduction and internal fixation with steel plate was employed. The perioperative data, including injury-operation time, operation duration, blood loss, and length of hospital stay, were assessed in both groups. Additionally, the QuickDASH score and visual analogue scale (VAS) were evaluated. Range of motion and grip strength assessment, imaging findings such as palmar inclination angle, ulnar declination angle, radius length, articular surface step, intra-articular space measurements were also examined along with any complications.
RESULTS:
The follow-up duration ranged from 0 to 24 months, with an average duration of (16.0±3.8) months. The CO external fixation exhibited significantly shorter time from injury to operation (2.4±3.3) d vs (7.4±3.7) d, shorter operation duration (56.27±15.23) min vs (74.10±5.26) min, lower blood loss (14.52±6.54) ml vs (32.32±10.03) ml, and reduced hospitalization days (14.04±3.24 )d vs (16.45±3.05) d compared to the internal fixation group (P<0.05). The QuickDASH score at 12 months post-operation was (8.21±1.64) in the CO external fixation group, while no significant difference was observed in the internal fixation group (7.04±3.64), P>0.05. There were no statistically significant differences in VAS between two groups at 6 weeks, as well as 1 and 3 months post-surgery (P>0.05). Additionally, there were no significant disparities observed in terms of range of motion and grip strength between two groups at the 2-year follow-up after the operation (P>0.05). After 12 months of surgery, the CO external fixation group exhibited a significantly smaller palmar inclination angle (17.90±2.18) ° vs (19.87±3.21) °, reduced articular surface step (0.11±0.03) mm vs (0.17±0.02) mm, and shorter radius length (8.16±1.11) mm compared to the internal fixation group (9.59±1.02) mm, P<0.05. The ulnar deviation angle and intra-articular space did not show any significant difference between two groups (P>0.05). The reduced fell within the allowable range between the CO external fixation group (23 out of 25 cases) and the internal fixation group (21 out of 23 cases) was not statistically significant (P=0.29). There was no significant difference in complications between the two groups(P>0.05).
CONCLUSION
Both the CO external fixation and open reduction with plate internal fixation demonstrate clinical efficacy in managing unstable distal radius fractures. The CO external fixation offers advantages in shorter injury-to-operation times, reduced intraoperative blood loss, and decreased surgical durations, while radial shortening is more effectively controlled by internal fixation.
Humans
;
Male
;
Female
;
Middle Aged
;
Radius Fractures/physiopathology*
;
Adult
;
Bone Plates
;
Fracture Fixation, Internal/methods*
;
External Fixators
;
Retrospective Studies
;
Fracture Fixation/methods*
;
Wrist Fractures
10.Visual analysis of dynamics and hotspots of biomechanics research on diabetic foot based on WoSCC.
Zhe WANG ; Wei-Dong LIU ; Jun LU ; Hong-Mou ZHAO ; Xue-Fei CAO ; Yun-Long ZHANG ; Xin CHANG ; Liang LIU
China Journal of Orthopaedics and Traumatology 2025;38(9):902-909
OBJECTIVE:
To explore the current research status and hotspots in the field of biomechanics of diabetic foot by bibliometric analysis methods.
METHODS:
Literatures related to biomechanics of diabetic foot published in the Web of Scienc Core Collection (WoSCC) from 1981 to 2024 were searched. CiteSpace software and R language bibliometrics plugin were used to conduct a visual analysis of annual publication volume of the literature, including publication volume of each country and region, the publication situation of authors and institutions, the citation situation of individual literature, and the co-occurrence network of keywords.
RESULTS:
Totally 996 literatures were included, and the number of published papers increased steadily. The United States (261 papers) and China (89 papers) were the top two countries in terms of the number of published papers. The mediating centrality of the United States was 0.94, and that of China was 0.01. Scholars such as Cavanagh and institutions like the Cleveland Clinic were at the core of research in this field. High-frequency keywords include plantar pressure (plantar pressure), diabetic foot (diabetic foot), ulceration (ulcer), etc. The research focuses on plantar pressure, ulcer formation and prevention, etc.
CONCLUSION
Biomechanical research on diabetic foot mainly focuses on the pressure distribution on the sole of the foot, callus formation, mechanical analysis of soft tissues on the sole of the foot, and the study of plantar decompression caused by Achilles tendon elongation. The research trend has gradually shifted from focusing on joint range of motion to gait and the design of braces and assistive devices, and has begun to pay attention to muscle strength, gait imbalance and proprioception abnormalities.
Humans
;
Diabetic Foot/physiopathology*
;
Biomechanical Phenomena
;
Bibliometrics

Result Analysis
Print
Save
E-mail