1.Yimei Baijiang Formula Treats Colitis-associated Colorectal Cancer in Mice via NF-κB Signaling Pathway
Qian WU ; Xin ZOU ; Chaoli JIANG ; Long ZHAO ; Hui CHEN ; Li LI ; Zhi LI ; Jianqin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):119-130
ObjectiveTo explore the effects of Yimei Baijiang formula (YMBJF) on colitis-associated colorectal cancer (CAC) and the nuclear factor kappaB (NF-κB) signaling pathway in mice. MethodsSixty male Balb/c mice of 4-6 weeks old were randomized into 6 groups: Normal, model, capecitabine (0.83 g
2.Animal Model of Chronic Obstructive Pulmonary Disease and Intervention Effect of Traditional Chinese Medicine: A Review
Jiyu ZOU ; Lijian PANG ; Tianjiao WANG ; Ningzi ZANG ; Zhongxue ZHAO ; Yongming LIU ; Qi SI ; Tianya CAO ; Xuenan MA ; Ying WANG ; Jiaran WANG ; Xiaodong LYU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):294-303
Chronic obstructive pulmonary disease (COPD), as one of the three major causes of death, is a complex systemic disease with high prevalence, high mortality, high disability, frequent acute exacerbations, and a variety of pulmonary complications. The pathogenesis is complex. Western medicine has no effective specificity scheme for a complete cure. However, multiple-component and multiple-target characteristics of traditional Chinese medicine (TCM) demonstrate significant advantages in COPD treatment through multi-link, multi-pathway, and multi-mechanism intervention. Therefore, exploring the essence of COPD pathogenesis and discovering effective TCM treatment drugs through the application of TCM principles and prescriptions is a key focus of modern research. Animal models are of paramount importance in medical research. It is the first consideration to select appropriate animals, adopt reasonable modeling methods to replicate stable animal models that closely resemble the clinical manifestations and pathophysiological characteristics of COPD, and use appropriate evaluation methods to determine the success of COPD animal models in experimental research. The core of experimental research lies in observing the intervention effect of TCM on COPD animal models, exploring the specific pathways and regulatory mechanisms of TCM on COPD disease, and finding TCM monomers, single herbs, and TCM formulas with definite curative effects. At present, animal model research on COPD mainly involves model establishment, model evaluation, efficacy observation, mechanism exploration, and other aspects. In recent years, there has been no systematic organization, update, and reflection on the relevant research on TCM intervention in COPD animal models. This study reviewed the selection of animals for the COPD model, methods for establishing COPD animal models, model evaluation methods, and the intervention effects of TCM on COPD animal models. It aims to grasp the current research status and identify existing problems for further improvement, in order to provide evidence and support for scientific research and clinical treatment of COPD.
3.Yimei Baijiang Formula Treats Colitis-associated Colorectal Cancer in Mice via NF-κB Signaling Pathway
Qian WU ; Xin ZOU ; Chaoli JIANG ; Long ZHAO ; Hui CHEN ; Li LI ; Zhi LI ; Jianqin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):119-130
ObjectiveTo explore the effects of Yimei Baijiang formula (YMBJF) on colitis-associated colorectal cancer (CAC) and the nuclear factor kappaB (NF-κB) signaling pathway in mice. MethodsSixty male Balb/c mice of 4-6 weeks old were randomized into 6 groups: Normal, model, capecitabine (0.83 g
4.Animal Model of Chronic Obstructive Pulmonary Disease and Intervention Effect of Traditional Chinese Medicine: A Review
Jiyu ZOU ; Lijian PANG ; Tianjiao WANG ; Ningzi ZANG ; Zhongxue ZHAO ; Yongming LIU ; Qi SI ; Tianya CAO ; Xuenan MA ; Ying WANG ; Jiaran WANG ; Xiaodong LYU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):294-303
Chronic obstructive pulmonary disease (COPD), as one of the three major causes of death, is a complex systemic disease with high prevalence, high mortality, high disability, frequent acute exacerbations, and a variety of pulmonary complications. The pathogenesis is complex. Western medicine has no effective specificity scheme for a complete cure. However, multiple-component and multiple-target characteristics of traditional Chinese medicine (TCM) demonstrate significant advantages in COPD treatment through multi-link, multi-pathway, and multi-mechanism intervention. Therefore, exploring the essence of COPD pathogenesis and discovering effective TCM treatment drugs through the application of TCM principles and prescriptions is a key focus of modern research. Animal models are of paramount importance in medical research. It is the first consideration to select appropriate animals, adopt reasonable modeling methods to replicate stable animal models that closely resemble the clinical manifestations and pathophysiological characteristics of COPD, and use appropriate evaluation methods to determine the success of COPD animal models in experimental research. The core of experimental research lies in observing the intervention effect of TCM on COPD animal models, exploring the specific pathways and regulatory mechanisms of TCM on COPD disease, and finding TCM monomers, single herbs, and TCM formulas with definite curative effects. At present, animal model research on COPD mainly involves model establishment, model evaluation, efficacy observation, mechanism exploration, and other aspects. In recent years, there has been no systematic organization, update, and reflection on the relevant research on TCM intervention in COPD animal models. This study reviewed the selection of animals for the COPD model, methods for establishing COPD animal models, model evaluation methods, and the intervention effects of TCM on COPD animal models. It aims to grasp the current research status and identify existing problems for further improvement, in order to provide evidence and support for scientific research and clinical treatment of COPD.
5.Mechanism study of SIRT3 alleviating oxidative-stress injury in renal tubular cells by promoting mitochondrial biogenesis via regulating mitochondrial redox balance
Yaojun LIU ; Jun ZHOU ; Jing LIU ; Yunfei SHAN ; Huhai ZHANG ; Pan XIE ; Liying ZOU ; Lingyu RAN ; Huanping LONG ; Lunli XIANG ; Hong HUANG ; Hongwen ZHAO
Organ Transplantation 2026;17(1):86-94
Objective To elucidate the molecular mechanism of sirtuin-3 (SIRT3) in regulating mitochondrial biogenesis in human renal tubular epithelial cells. Methods Cells were stimulated with different concentrations of H2O2 and divided into four groups: control (NC), 50 μmol/L H2O2, 110 μmol/L H2O2 and 150 μmol/L H2O2. SIRT3 protein expression was then measured. SIRT3 was knocked down with siRNA, and cells were further assigned to five groups: control (NC), negative-control siRNA (NCsi), SIRT3-siRNA (siSIRT3), NCsi+H2O2, and siSIRT3+H2O2. After 24 h, cellular adenosine triphosphate (ATP) and mitochondrial superoxide anion (O2•−) levels were determined, together with mitochondrial expression of SIRT3, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), superoxide dismutase 2 (SOD2), acetylated-SOD2 and adenosine monophosphate activated protein kinase α1 (AMPKα1). Results The 110 and 150 μmol/L H2O2 decreased SIRT3 protein (both P<0.05). ATP and mitochondrial O2•− did not differ between NC and NCsi groups (both P>0.05). Compared to the NCsi group, the siSIRT3 group exhibited elevated O2•− level, decreased SIRT3 protein and increased expression levels of SOD2 and acetylated SOD2 protein (all P<0.05). Compared to the NCsi group, the NCsi+H2O2 group exhibited decreased cellular ATP levels, elevated mitochondrial O2•− levels, and reduced protein expression levels of SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 (all P<0.05). Compared with the siSIRT3 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 protein expression levels and a decrease in acetylated SOD2 protein expression levels (all P<0.05). Compared with the NCsi+H2O2 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, AMPKα1, PGC-1α and NRF1, TFAM protein expression levels, and an increase in SOD2 and acetylated SOD2 protein expression levels (all P<0.05). Conclusions SIRT3 promotes mitochondrial biogenesis in tubular epithelial cells via the AMPK/PGC-1α/NRF1/TFAM axis, representing a key mechanism through which SIRT3 ameliorates oxidative stress-induced mitochondrial dysfunction.
6.Human amniotic mesenchymal stem cells overexpressing neuregulin-1 promote skin wound healing in mice
Taotao HU ; Bing LIU ; Cheng CHEN ; Zongyin YIN ; Daohong KAN ; Jie NI ; Lingxiao YE ; Xiangbing ZHENG ; Min YAN ; Yong ZOU
Chinese Journal of Tissue Engineering Research 2025;29(7):1343-1349
BACKGROUND:Neuregulin 1 has been shown to be characterized in cell proliferation,differentiation,and vascular growth.Human amniotic mesenchymal stem cells are important seed cells in the field of tissue engineering,and have been shown to be involved in tissue repair and regeneration. OBJECTIVE:To construct human amniotic mesenchymal stem cells overexpressing neuregulin 1 and investigate their proliferation and migration abilities,as well as their effects on wound healing. METHODS:(1)Human amniotic mesenchymal stem cells were in vitro isolated and cultured and identified.(2)A lentivirus overexpressing neuregulin 1 was constructed.Human amniotic mesenchymal stem cells were divided into empty group,neuregulin 1 group,and control group,and transfected with empty lentivirus and lentivirus overexpressing neuregulin 1,or not transfected,respectively.(3)Edu assay was used to detect the proliferation ability of the cells of each group,and Transwell assay was used to detect the migration ability of the cells.(4)The C57 BL/6 mouse trauma models were constructed and randomly divided into control group,empty group,neuregulin 1 group,with 8 mice in each group.Human amniotic mesenchymal stem cells transfected with empty lentivirus or lentivirus overexpressing neuregulin-1 were uniformly injected with 1 mL at multiple local wound sites.The control group was injected with an equal amount of saline.(5)The healing of the trauma was observed at 1,7,and 14 days after model establishment.Histological changes of the healing of the trauma were observed by hematoxylin-eosin staining.The expression of CD31 on the trauma was observed by immunohistochemistry. RESULTS AND CONCLUSION:(1)Human amniotic mesenchymal stem cells overexpressing neuregulin-1 were successfully constructed.The mRNA and protein expression of intracellular neuregulin 1 was significantly up-regulated compared with the empty group(P<0.05).(2)The overexpression of neuregulin 1 promoted the migratory ability(P<0.01)and proliferative ability of human amniotic mesenchymal stem cells(P<0.05).(3)Human amniotic mesenchymal stem cells overexpressing neuregulin 1 promoted wound healing in mice(P<0.05)and wound angiogenesis(P<0.05).The results showed that overexpression of neuregulin 1 resulted in an increase in the proliferative and migratory capacities of human amniotic mesenchymal stem cells,significantly promoting wound healing and angiogenesis.
7.A study on the coercive experience of involuntarily hospitalized adolescents with mental disorders
Lingyu LI ; Xinyi LIU ; Jiawei SHI ; Gen CHENG ; Haiou ZOU
Chinese Medical Ethics 2025;38(2):232-240
ObjectiveTo explore the coercive experience of involuntarily hospitalized adolescents with mental disorders during the admission process and hospitalization, providing references for formulating targeted nursing interventions. MethodsSemi-structured interviews were conducted with 15 involuntarily hospitalized adolescents with mental disorders selected from October to December 2023, and the themes were summarized and extracted by content analysis. ResultsA total of 3 themes and 10 sub-themes were extracted, which were used to elaborate the essential contents, causes, and improvement methods of coercive experience. These encompassed the multi-dimensional content of coercive experience (complex emotional experience, different physical sensations, and contradictory cognitive evaluation), the multi-faceted causes of coercive experience (insufficient personal preparation, inadequate parental communication, and strict medical management system), as well as the phased improvement of coercive experience (adequate communication before hospitalization, patient notification before coercive intervention, respecting for demands during coercive intervention, and comforting explanation after coercive intervention). ConclusionThe essential content of the coercive experience of involuntarily hospitalized adolescents with mental disorders is complex and has various causes, which require cooperation from multiple parties to improve. Therefore, parents should respect the expression of their children’s self-will, and medical staff should respect patients’ autonomy, establishing a protection-constrained doctor-patient relationship model and collaborating to reduce the use of coercive interventions, to improve the overall medical satisfaction of adolescents with mental disorders.
8.Mechanism of Weiliuan Mixture in Regulating Ferroptosis and Inhibiting Progression of Gastric Cancer Based on Transcriptome
Jingxiao LI ; Shenlin LIU ; Xi ZOU ; Minghao QI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):125-135
ObjectiveTo observe the inhibitory effect of the Weiliuan mixture (WLAHJ) on the subcutaneous xenograft tumor of MKN-74 gastric cancer cells, and explore the potential anti-gastric cancer mechanism of WLAHJ by using transcriptomic sequencing technology to reveal related genes and pathways. Methods30 Balb/c nude mice were randomly divided into model, low-, medium-, and high-dose(15,30,45 g·kg-1) WLAHJ and 5-FU (0.025 g·kg-1) groups to build a subcutaneous xenograft tumor model with MKN-74 human gastric cancer cells. After modeling,each group was continuously treated with the corresponding drugs for 28 days. During the treatment period, the body weight and tumor size of the mice were observed and recorded every 2 days. At the end of the treatment, the mice were sacrificed, and required samples were collected to calculate the tumor inhibition rate of WLAHJ on the subcutaneous xenograft tumor. High-throughput transcriptomic sequencing (RNA-seq) technology was used to analyze the differentially expressed genes in the subcutaneous tumor tissues of the model group and the medium-dose WLAHJ group, thus exploring the potential mechanism of WLAHJ in gastric cancer intervention. Immunofluorescence experiments were conducted to detect the protein expression levels of glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), transferrin receptor protein-1 (TFR-1), and acyl-CoA synthetase long-chain family member 4 (ACSL4) in subcutaneous xenograft tumors of each group. Cell counting kit-8(CCK-8) and colony formation assays were used to detect the viability and anti-proliferative ability of human gastric cancer AGS and MKN-74 cells at different concentrations of WLAHJ. Kits were used to detect the levels of Fe2+, reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) activity in cells. Western blot was used to detect the expression levels of GPX4, SLC7A11, TRF-1, ACSL4, spermidine/spermine N1-acetyltransferase 1 (SAT1), arachidonic acid 15-lipoxygenase (ALOX15), and key proteins in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. ResultsThe mechanism of WLAHJ in gastric cancer intervention may be related to ferroptosis and the PI3K/Akt /mTOR signaling pathway. The growth of subcutaneous xenograft tumors in nude mice of the WLAHJ and 5-FU groups(P<0.05,P<0.01), GPX4, and SLC7A11 dropped significantly(P<0.01), while TFR-1, ACSL4, SAT1, and ALOX15(P<0.05,P<0.01)increased significantly compared with those in the model group. The levels of ROS, Fe2+, and MDA increased in the WLAHJ and 5-FU groups and the proliferation of gastric cancer cells, SOD activity, the ratios of phosphorybation (p)-mTOR/mTOR, p-PI3K/PI3K, and p-Akt/Akt protein expressions(P<0.05,P<0.01)decreased compared with those in the blank group. ConclusionThe mechanism of WLAHJ in treating gastric cancer may be related to the regulation of the PI3K/ Akt /mTOR signaling pathway to intervene in ferroptosis.
9.Effect of Zishen Tongguan Formula on "Gut-prostate" Axis of Rats with Chronic Non-bacterial Prostatitis Based on 16S rDNA Sequencing
Xiran LI ; Mengjiao CHEN ; Kaiping ZOU ; Chenguang ZHAO ; Xingbin DAI ; Xiaoqing ZHANG ; Shun LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):63-71
ObjectiveBased on the theory of "gut-prostate" axis, this study explored the effects and mechanisms of Zishen Tongguan formula and Cinnamomi Cortex in the formula in treating rats with chronic non-bacterial prostatitis(CNP) by detecting the levels of inflammatory factors, and the composition and structure of intestinal flora in CNP rats. MethodsEight out of 42 SD rats were randomly selected as the normal group, and the remaining rats were injected with carrageenan to prepare the CNP model. After successful modeling, 32 rats were randomly divided into the model group, Ningmitai capsule group(0.50 g·kg-1), Zishen Tongguan formula group(2.00 g·kg-1), and the Phellodendri Chinensis Cortex-Anemarrhenae Rhizoma pair group(PCC-AR group, 2.00 g·kg-1), with 8 rats in each group. The administered groups were given the corresponding medicinal solution by gavage, and the normal and model groups were intragastrically administered with an equal volume of normal saline, once a day for 14 consecutive days. The prostate tissues of rats were collected and subjected to hematoxylin-eosin(HE) staining and Masson staining to observe the pathological changes of the tissues in each group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of related inflammatory factors in rat serum, and 16S rDNA sequencing was used to analyze the abundance and diversity changes of gut microbiota before and after administration, and species difference analysis was performed. ResultsAll the administered groups could alleviate the inflammatory symptoms of CNP rats, increase the expression levels of anti-inflammatory factors and decrease the expression levels of pro-inflammatory factors, with the most sIgnificant effect observed in the Zishen Tongguan formula group. Compared with the normal group, the expression levels of interleukin(IL)-8, hypersensitive C-reactive protein(hs-CRP), immunoglobulin(Ig)M, secretory IgA (sIgA), and inducible nitric oxide synthase(iNOS) were sIgnificantly increased in the model group(P<0.01). Compared with the model group, the expression levels of the above inflammatory factors in all administered groups were significantly reduced(P<0.01). When compared with the PCC-AR group, the Zishen Tongguan formula group showed a significant decrease in transforming growth factor(TGF)-β1 expression level(P<0.05) and a significant increase in IgM expression level(P<0.01). The results of gut microbiota analysis showed that, compared with the PCC-AR group, at the order level, the Zishen Tongguan formula group significantly reduced the relative abundance of conditional pathogens such as Bacteroidales, Acidaminococcales, Rhodospirillales, Clostridiales, and Elusimicrobiales(P<0.01). And at the genus level, the Zishen Tongguan formula group significantly decreased the relative abundance of pathogenic microbiota such as Lachnospira and Bacteroides(P<0.01) and significantly increased the relative abundances of beneficial microbiota such as Ruminococcus and Lactobacillus(P<0.01). ConclusionZishen Tongguan formula can reduce the level of harmful intestinal bacteria, increase the level of beneficial intestinal bacteria, down-regulate the expression of serum inflammatory factors, and the small amount of Cinnamomi Cortex in the formula may play a key role in the treatment of CNP with this formula.
10.Effect of Zishen Tongguan Formula on "Gut-prostate" Axis of Rats with Chronic Non-bacterial Prostatitis Based on 16S rDNA Sequencing
Xiran LI ; Mengjiao CHEN ; Kaiping ZOU ; Chenguang ZHAO ; Xingbin DAI ; Xiaoqing ZHANG ; Shun LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):63-71
ObjectiveBased on the theory of "gut-prostate" axis, this study explored the effects and mechanisms of Zishen Tongguan formula and Cinnamomi Cortex in the formula in treating rats with chronic non-bacterial prostatitis(CNP) by detecting the levels of inflammatory factors, and the composition and structure of intestinal flora in CNP rats. MethodsEight out of 42 SD rats were randomly selected as the normal group, and the remaining rats were injected with carrageenan to prepare the CNP model. After successful modeling, 32 rats were randomly divided into the model group, Ningmitai capsule group(0.50 g·kg-1), Zishen Tongguan formula group(2.00 g·kg-1), and the Phellodendri Chinensis Cortex-Anemarrhenae Rhizoma pair group(PCC-AR group, 2.00 g·kg-1), with 8 rats in each group. The administered groups were given the corresponding medicinal solution by gavage, and the normal and model groups were intragastrically administered with an equal volume of normal saline, once a day for 14 consecutive days. The prostate tissues of rats were collected and subjected to hematoxylin-eosin(HE) staining and Masson staining to observe the pathological changes of the tissues in each group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of related inflammatory factors in rat serum, and 16S rDNA sequencing was used to analyze the abundance and diversity changes of gut microbiota before and after administration, and species difference analysis was performed. ResultsAll the administered groups could alleviate the inflammatory symptoms of CNP rats, increase the expression levels of anti-inflammatory factors and decrease the expression levels of pro-inflammatory factors, with the most sIgnificant effect observed in the Zishen Tongguan formula group. Compared with the normal group, the expression levels of interleukin(IL)-8, hypersensitive C-reactive protein(hs-CRP), immunoglobulin(Ig)M, secretory IgA (sIgA), and inducible nitric oxide synthase(iNOS) were sIgnificantly increased in the model group(P<0.01). Compared with the model group, the expression levels of the above inflammatory factors in all administered groups were significantly reduced(P<0.01). When compared with the PCC-AR group, the Zishen Tongguan formula group showed a significant decrease in transforming growth factor(TGF)-β1 expression level(P<0.05) and a significant increase in IgM expression level(P<0.01). The results of gut microbiota analysis showed that, compared with the PCC-AR group, at the order level, the Zishen Tongguan formula group significantly reduced the relative abundance of conditional pathogens such as Bacteroidales, Acidaminococcales, Rhodospirillales, Clostridiales, and Elusimicrobiales(P<0.01). And at the genus level, the Zishen Tongguan formula group significantly decreased the relative abundance of pathogenic microbiota such as Lachnospira and Bacteroides(P<0.01) and significantly increased the relative abundances of beneficial microbiota such as Ruminococcus and Lactobacillus(P<0.01). ConclusionZishen Tongguan formula can reduce the level of harmful intestinal bacteria, increase the level of beneficial intestinal bacteria, down-regulate the expression of serum inflammatory factors, and the small amount of Cinnamomi Cortex in the formula may play a key role in the treatment of CNP with this formula.

Result Analysis
Print
Save
E-mail