1.Chromatin landscape alteration uncovers multiple transcriptional circuits during memory CD8+ T-cell differentiation.
Qiao LIU ; Wei DONG ; Rong LIU ; Luming XU ; Ling RAN ; Ziying XIE ; Shun LEI ; Xingxing SU ; Zhengliang YUE ; Dan XIONG ; Lisha WANG ; Shuqiong WEN ; Yan ZHANG ; Jianjun HU ; Chenxi QIN ; Yongchang CHEN ; Bo ZHU ; Xiangyu CHEN ; Xia WU ; Lifan XU ; Qizhao HUANG ; Yingjiao CAO ; Lilin YE ; Zhonghui TANG
Protein & Cell 2025;16(7):575-601
Extensive epigenetic reprogramming involves in memory CD8+ T-cell differentiation. The elaborate epigenetic rewiring underlying the heterogeneous functional states of CD8+ T cells remains hidden. Here, we profile single-cell chromatin accessibility and map enhancer-promoter interactomes to characterize the differentiation trajectory of memory CD8+ T cells. We reveal that under distinct epigenetic regulations, the early activated CD8+ T cells divergently originated for short-lived effector and memory precursor effector cells. We also uncover a defined epigenetic rewiring leading to the conversion from effector memory to central memory cells during memory formation. Additionally, we illustrate chromatin regulatory mechanisms underlying long-lasting versus transient transcription regulation during memory differentiation. Finally, we confirm the essential roles of Sox4 and Nrf2 in developing memory precursor effector and effector memory cells, respectively, and validate cell state-specific enhancers in regulating Il7r using CRISPR-Cas9. Our data pave the way for understanding the mechanism underlying epigenetic memory formation in CD8+ T-cell differentiation.
CD8-Positive T-Lymphocytes/metabolism*
;
Cell Differentiation
;
Chromatin/immunology*
;
Animals
;
Mice
;
Immunologic Memory
;
Epigenesis, Genetic
;
SOXC Transcription Factors/immunology*
;
NF-E2-Related Factor 2/immunology*
;
Mice, Inbred C57BL
;
Gene Regulatory Networks
;
Enhancer Elements, Genetic
2.Research Progress of Granulocytic Myeloid-derived Suppressor Cells in Non-small Cell Lung Cancer
YANG CHAODAN ; ZHU RUI ; ZHANG YUTING ; YING LISHA ; WANG JIAMIN ; LIU PAN ; SU DAN
Chinese Journal of Lung Cancer 2024;27(1):65-72
Granulocytic myeloid-derived suppressor cells(G-MDSCs)are one of the main subgroups of MD-SCs,which are widely enriched in most cancers.It can inhibit the killing function of T-lymphocyte through the expression of arginase-1(Arg-1)and reactive oxygen species(ROS),reshape the tumor immune microenvironment,and promote the oc-currence and development of tumors.In recent years,more and more studies have found that G-MDSCs are significantly cor-related with the prognosis and immunotherapy efficacy of patients with non-small cell lung cancer,and the use of drugs specifi-cally targeting the recruitment,differentiation and function of G-MDSCs can effectively inhibit tumor progression.This article reviews the immunosuppressive effect of G-MDSCs in non-small cell lung cancer and the progress of related pathway targeting drugs.
3.The Effects of Wenfei Huaxian Decoction (温肺化纤汤) on Pulmonary Fibrosis and Endoplasmic Reticulum Stress in Systemic Sclerosis-Associated Interstitial Lung Disease Model Mice
Mingliang QIU ; Jiali XIONG ; Chenxiao XIAO ; Xinzhu ZHOU ; Lisha MO ; Shiwen KE ; Guoshuang ZHU ; Liangji LIU
Journal of Traditional Chinese Medicine 2024;65(13):1383-1391
ObjectiveTo investigate the possible mechanism of Wenfei Huaxian Decoction (温肺化纤汤) in treatment of pulmonary fibrosis in systemic sclerosis-associated interstitial lung disease (SSc-ILD). MethodsSixty C3H/He female rats were randomly divided into a control group, a model group, a pirfenidone group, and low-, medium-, and high-dose Wenfei Huaxian Decoction groups. The SSc-ILD model mice was established by subcutaneous injection of bleomycin solution 0.04 mg/d into the back of mice for 28 days in all groups but the control group. After successful modelling, the pirfenidone group was given pirfenidone capsule 300 mg/(kg·d) by gavage, the low-, medium- and high-dose Wenfei Huaxian Decoction groups were given Wenfei Huaxian Decoction 7.81, 15.62, and 31.24 g/(kg·d) by gavage, respectively, and the control group as well as the model group were given normal saline 0.1 ml/10 g by gavage, for a total of 21 days. At the end of the intervention, HE staining and Masson staining were used to observe the pathological changes in the skin and lung tissues; the hydroxyproline content of the skin and lung tissues was detected; the protein expression levels of endoplasmic reticulum stress-related proteins glucose-regulated protein 78 (BIP) and C/EBP homologous protein (CHOP) as well as those of nuclear factor kappa B (NF-κB) pathway p65 were measured by western blot; ELISA was performed to determine the expression levels of interferon gamma (IFN-γ), interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-α) in serum of rats. ResultsThe results of HE and Masson staining indicated that compared with the control group, the dermis significantly thickened, the number of collagen fibers significantly enlarged, and the number of inflammatory cells significantly increased in the model group; the lung tissue showed a marked inflammatory cellular response with massive collagen fibre proliferation with inflammatory cell infiltration. Compared with the model group, the skin tissue and lung tissue collagen fibre proliferation significantly reduced and inflammatory cell infiltration reduced in the pirfenidone group and all dose groups of Wenfei Huaxian Decoction, and the effects of pirfenidone group and Wenfei Huaxian Decoction medium- and high-dose groups were basically comparable. Compared with the model group, the content of hydroxyproline in skin and lung tissue, the serum level of IFN-γ, IL-6 and TNF-α, and the expression levels of BIP and CHOP protein in lung tissue increased in model group (P<0.05). Compared with model group, the content of hydroxyproline in skin tissue of pirfenidone group, low-and medium-dose Wenfei Huaxian Decoction groups decreased, and the content of hydroxyproline in lung tissue of medium-dose Wenfei Huaxian Decoction group decreased. The serum level of IFN-γ, IL-6, TNF-α and the expression levels of BIP, CHOP and p65 protein in lung tissue of rats in pirfenidone group and high-dose Wenfei Huaxian Decoction group decreased (P<0.05). The content of hydroxyproline in lung tissue of medium-dose Wenfei Huaxian Decoction group was significantly lower than that of low-dose and high-dose Wenfei Huaxian Decoction group, and the serum level of IFN-γ, IL-6, TNF-α in low- and medium-dose Wenfei Huaxian Decoction group were higher than those in high-dose Wenfei Huaxian Decoction group. The expression level of BIP protein in high-dose group was significantly lower than that in low- and medium-dose Wenfei Huaxian Decoction groups (P<0.05). ConclusionWenfei Huaxian Decoction can improve the skin and lung fibrosis of SSc-ILD rats, which may act through anti-inflammation, inhibition of NF-κB pathway, and then inhibition of endoplasmic reticulum stress, which ultimately blocked the fibrotic process.
4.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement.
Liyuan CHEN ; Huajie YU ; Zixin LI ; Yu WANG ; Shanshan JIN ; Min YU ; Lisha ZHU ; Chengye DING ; Xiaolan WU ; Tianhao WU ; Chunlei XUN ; Yanheng ZHOU ; Danqing HE ; Yan LIU
International Journal of Oral Science 2024;16(1):3-3
Pyroptosis, an inflammatory caspase-dependent programmed cell death, plays a vital role in maintaining tissue homeostasis and activating inflammatory responses. Orthodontic tooth movement (OTM) is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament (PDL) progenitor cells. However, whether and how force induces PDL progenitor cell pyroptosis, thereby influencing OTM and alveolar bone remodeling remains unknown. In this study, we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process. Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively. Using Caspase-1-/- mice, we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1. Moreover, mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro, which influenced osteoclastogenesis. Mechanistically, transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells. Overall, this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli, indicating a promising approach to accelerate OTM by targeting Caspase-1.
Animals
;
Humans
;
Mice
;
Rats
;
Bone Remodeling/physiology*
;
Caspase 1
;
Periodontal Ligament
;
Pyroptosis
;
Tooth Movement Techniques
5.Application progress of mesenchymal stem cells in islet transplantation for type 1 diabetes mellitus
Organ Transplantation 2024;15(2):214-219
Islet transplantation is considered as one of the most effective approach for type 1 diabetes mellitus, although its efficacy is limited by several factors. Anoxia, stress and rejection occurring during the isolation, culturing and transplantation of islets may have impact on the outcome of the islet transplantation. Due to the biological properties such as anti-inflammation, angiogenetic promotion and immune regulation, mesenchymal stem cells (MSCs) are all the way focused by researchers. Additionally, exosome, a derivative of MSC, also plays an import role in regulating anoxia-induced oxidative stress modulation, angiogenetic promotion, and immune regulation. MSC-based islet transplantation may be a useful therapeutic tool in treating type 1 diabetes. Therefore, in this review, the potential effect of MSC prior and posterior to the operation of the islet transplantation, its clinical application as well as its limitations were reviewed, aiming to offer insights into the future application of islet transplantation in treating type 1 diabetes.
6.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
7.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
8.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
9.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
10.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.

Result Analysis
Print
Save
E-mail