1.Clinical observation of metformin in the treatment of diabetes mellitus type 2 complicated with sarcopenia in elderly patients
Xuemei ZHONG ; Min CHEN ; Yayun LING ; Bingqian ZHANG
China Pharmacy 2025;36(6):732-736
OBJECTIVE To investigate the efficacy and safety of metformin in the treatment of diabetes mellitus type 2 (T2DM) complicated with sarcopenia in elderly patients. METHODS From January 2022 to January 2024, clinical data from eligible patients with T2DM complicated with sarcopenia treated at the First Affiliated Hospital of Chongqing Medical and Pharmaceutical College were collected. Patients were randomly assigned into control group (70 cases) and observation group (70 cases) using a random number table. Both groups received routine interventions; control group additionally received subcutaneous injections of Insulin glargine injection before bedtime and Human insulin injection 30 minutes before breakfast, lunch and dinner every day. In addition to the same treatments as the control group, the observation group was administered 0.5 g of Metformin hydrochloride sustained-release tablets orally once daily. Both groups were treated continuously for 24 weeks. Comparisons were made between the two groups in terms of glucose metabolism indexes [fasting blood glucose (FBG), 2 h postprandial blood glucose (2 hBG), and glycosylated hemoglobin (HbA1c)], homeostasis model assessment of insulin resistance (HOMA-IR), appendicular skeletal mass muscle index (ASMI), grip strength, walking speed, lipid metabolism indexes [serum total triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C)], serological markers [high-sensitivity C reactive protein (hs-CRP), interleukin-6 (IL-6), and ferritin levels] and quality of life. The occurrence of ADR was recorded in both groups. RESULTS 65 patients in the control group and 63 patients in the observation group completed this study, respectively. After treatment, the levels of FBG, 2 hBG, HbA1c, HOMA-IR,TG and TC in both groups, and the levels of hs-CRP, IL-6 and ferritin in observation group were all significantly reduced compared to those before treatment (P<0.05), and the HOMA-IR in observation group was significantly lower than control group (P<0.05); additionally, the grip strength, walking speed, and scores for daily living and activity abilities of observation group were increased than those before treatment and the control group (P<0.05). The incidence of adverse drug reactions in both groups was 2.86%. CONCLUSIONS Metformin can reduce inflammatory factors and ferritin levels, promote the recovery of muscle mass and strength, improve insulin resistance, and quality of life in elderly patients with T2DM complicated with sarcopenia, and does not increase the occurrence of adverse drug reactions.
2.Mechanism of Aerobic Exercise in Delaying Brain Aging in Aging Mice by Regulating Tryptophan Metabolism
De-Man ZHANG ; Chang-Ling WEI ; Yuan-Ting ZHANG ; Yu JIN ; Xiao-Han HUANG ; Min-Yan ZHENG ; Xue LI
Progress in Biochemistry and Biophysics 2025;52(6):1362-1372
ObjectiveTo explore the molecular mechanism of aerobic exercise to improve hippocampal neuronal degeneration by regulating tryptophan metabolic pathway. Methods60 SPF-grade C57BL/6J male mice were divided into a young group (2 months old, n=30) and a senile group (12 months old, n=30), and each group was further divided into a control group (C/A group, n=15) and an exercise group (CE/AE group, n=15). An aerobic exercise program was used for 8 weeks. Learning memory ability was assessed by Y-maze, and anxiety-depression-like behavior was detected by absent field experiment. Hippocampal Trp levels were measured by GC-MS. Nissl staining was used to observe the number and morphology of hippocampal neurons, and electron microscopy was used to detect synaptic ultrastructure. ELISA was used to detect the levels of hippocampal Trp,5-HT, Kyn, KATs, KYNA, KMO, and QUIN; Western blot was used to analyze the activities of TPH2, IDO1, and TDO enzymes. ResultsGroup A mice showed significant decrease in learning and memory ability (P<0.05) and increase in anxiety and depressive behaviors (P<0.05); all of AE group showed significant improvement (P<0.05). Hippocampal Trp levels decreased in group A (P<0.05) and increased in AE group (P<0.05). Nidus vesicles were reduced and synaptic structures were degraded in group A (P<0.05), and both were significantly improved in group AE (P<0.05). The levels of Trp, 5-HT, KATs, and KYNA were decreased (P<0.05) and the levels of Kyn, KMO, and QUIN were increased (P<0.05) in group A. The activity of TPH2 was decreased (P<0.05), and the activities of IDO1 and TDO were increased (P<0.05). The AE group showed the opposite trend. ConclusionThe aging process significantly reduces the learning memory ability and increases the anxiety-depression-like behavior of mice, and leads to the reduction of the number of nidus vesicles and degenerative changes of synaptic structure in the hippocampus, whereas aerobic exercise not only effectively enhances the spatial learning memory ability and alleviates the anxiety-depression-like behavior of aging mice, but also improves the morphology and structure of neurons in hippocampal area, which may be achieved by the mechanism of regulating the tryptophan metabolic pathway.
3.Study on Kinetic and Static Tasks With Different Resistance Coefficients in Post-stroke Rehabilitation Training Based on Functional Near-infrared Spectroscopy
Ling-Di FU ; Jia-Xuan DOU ; Ting-Ting YING ; Li-Yong YIN ; Min TANG ; Zhen-Hu LIANG
Progress in Biochemistry and Biophysics 2025;52(7):1890-1903
ObjectiveFunctional near-infrared spectroscopy (fNIRS), a novel non-invasive technique for monitoring cerebral activity, can be integrated with upper limb rehabilitation robots to facilitate the real-time assessment of neurological rehabilitation outcomes. The rehabilitation robot is designed with 3 training modes: passive, active, and resistance. Among these, the resistance mode has been demonstrated to yield superior rehabilitative outcomes for patients with a certain level of muscle strength. The control modes in the resistance mode can be categorized into dynamic and static control. However, the effects of different control modes in the resistance mode on the motor function of patients with upper limb hemiplegia in stroke remain unclear. Furthermore, the effects of force, an important parameter of different control modes, on the activation of brain regions have rarely been reported. This study investigates the effects of dynamic and static resistance modes under varying resistance levels on cerebral functional alterations during motor rehabilitation in post-stroke patients. MethodsA cohort of 20 stroke patients with upper limb dysfunction was enrolled in the study, completing preparatory adaptive training followed by 3 intensity-level tasks across 2 motor paradigms. The bilateral prefrontal cortices (PFC), bilateral primary motor cortices (M1), bilateral primary somatosensory cortices (S1), and bilateral premotor and supplementary motor cortices (PM) were examined in both the resting and motor training states. The lateralization index (LI), phase locking value (PLV), network metrics were employed to examine cortical activation patterns and topological properties of brain connectivity. ResultsThe data indicated that both dynamic and static modes resulted in significantly greater activation of the contralateral M1 area and the ipsilateral PM area when compared to the resting state. The static patterns demonstrated a more pronounced activation in the contralateral M1 in comparison to the dynamic patterns. The results of brain network analysis revealed significant differences between the dynamic and resting states in the contralateral PFC area and contralateral M1 area (F=4.709, P=0.038), as well as in the contralateral PM area and ipsilateral M1 area (F=4.218, P=0.049). Moreover, the findings indicated a positive correlation between the activation of the M1 region and the increase in force in the dynamic mode, which was reversed in the static mode. ConclusionBoth dynamic and static resistance training modes have been demonstrated to activate the corresponding brain functional regions. Dynamic resistance modes elicit greater oxygen changes and connectivity to the region of interest (ROI) than static resistance modes. Furthermore, the effects of increasing force differ between the two modes. In patients who have suffered a stroke, dynamic modes may have a more pronounced effect on the activation of exercise-related functional brain regions.
4.Circulating immunological transcriptomic profile identifies DDX3Y and USP9Y on the Y chromosome as promising biomarkers for predicting response to programmed death 1/programmed death ligand 1 blockade.
Liting YOU ; Zhaodan XIN ; Feifei NA ; Min CHEN ; Yang WEN ; Jin LI ; Jiajia SONG ; Ling BAI ; Jianzhao ZHAI ; Xiaohan ZHOU ; Binwu YING ; Juan ZHOU
Chinese Medical Journal 2025;138(3):364-366
5.Constructing core outcome set for clinical research on traditional Chinese medicine treatment of post-stroke aphasia.
Ya-Nan MA ; Min-Jie XU ; Yu-Ai YANG ; Jian CHEN ; Qiao-Sheng REN ; Ying LI ; Jing-Ling CHANG
China Journal of Chinese Materia Medica 2025;50(1):238-253
According to the principle and current domestic and international construction processes of core outcome set(COS) and the characteristics of post-stroke aphasia, this study built COS with evidence-based support for traditional Chinese medicine(TCM) treatment of post-stroke aphasia. Firstly, a comprehensive review was conducted on the articles about the TCM treatment of post-stroke aphasia that were published in the four major Chinese databases, three major English databases, and three clinical registration centers over the past five years. The articles were analyzed and summarized, on the basis of which the main part of the COS for clinical research on the TCM treatment of post-stroke aphasia was formed. Secondly, clinical doctors and related nursing personnel were interviewed, and important outcome indicators in the clinical diagnosis and treatment process were supplemented to form a pool of core outcome indicators. Two rounds of Delphi surveys were carried out to score the importance of the core outcome indicators in the pool. Finally, a consensus meeting of experts was held to establish the COS for clinical research on the TCM treatment of post-stroke aphasia. The final COS included a total of 268 studies [236 randomized controlled trials(RCTs), 21 Meta-analysis, and 11 clinical registration protocols] and 20 open questionnaire survey results. After two rounds of Delphi surveys, a total of 14 outcome indicators and their corresponding measurement tools were included in the expert consensus meeting. The final expert consensus meeting determined the COS for post-stroke aphasia, which included 9 indicator domains and 12 outcome indicators.
Humans
;
Aphasia/therapy*
;
Stroke/complications*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
;
Treatment Outcome
6.Safety evaluation of new drugs of traditional Chinese medicine based on human use experience.
Zhong-Qi YANG ; Ya-Qin TANG ; Hui-Min TANG ; Yan LING ; Yan-Ping DU
China Journal of Chinese Materia Medica 2025;50(3):812-816
Because of the unclear active substances, metabolic pathways, and targets of new drugs of traditional Chinese medicine(TCM), non-clinical safety evaluation often fails to accurately locate the target organs and tissue exposed to medicinal toxicity. The human use experience(HUE) contains important safety information of TCM, while the clinical safety data in the past HUE are few and have not been effectively applied. Standardized prospective HUE studies should be carried out to collect the clinical safety data, in which appropriate physical and chemical indicators(including blood, urine, and stool routine), liver biochemical indicators, kidney biochemical indicators, and cardiovascular biochemical indicators should be selected for safety evaluation, and the detection time point and sample size should be rationally designed. Importance should be attached to the observation of symptoms and signs of adverse events/reactions in patients as well as the safety information of special groups such as the elderly, children, and pregnant women. The adverse events of TCM should be observed, judged, and treated according to the theory and the diagnosis and treatment mode of TCM. The clinical safety information about the HUE should be comprehensively collected for new drugs of TCM to make up for the lack of extrapolation of toxicological test results to humans. The unique advantages of clinical origin of new drugs of TCM should be given full play for cross-reference of the results of toxicological research and the conclusions of HUE safety evaluation. In addition, benefit-risk assessment should be conducted based on HUE, and a panoramic safety evaluation system characterized by macro and micro combination and in line with the characteristics of TCM should be established to improve the success rate in the research and development of new drugs of TCM.
Humans
;
Drugs, Chinese Herbal/adverse effects*
;
Medicine, Chinese Traditional/adverse effects*
;
Drug-Related Side Effects and Adverse Reactions
;
Female
7.Anti-tumor effect of metal ion-mediated natural small molecules carrier-free hydrogel combined with CDT/PDT.
Wen-Min PI ; Gen LI ; Xin-Ru TAN ; Zhi-Xia WANG ; Xiao-Yu LIN ; Hai-Ling QIU ; Fu-Hao CHU ; Bo WANG ; Peng-Long WANG
China Journal of Chinese Materia Medica 2025;50(7):1770-1780
Metal ion-promoted chemodynamic therapy(CDT) combined with photodynamic therapy(PDT) offers broad application prospects for enhancing anti-tumor effects. In this study, glycyrrhizic acid(GA), copper ions(Cu~(2+)), and norcantharidin(NCTD) were co-assembled to successfully prepare a natural small-molecule, carrier-free hydrogel(NCTD Gel) with excellent material properties. Under 808 nm laser irradiation, NCTD Gel responded to the tumor microenvironment(TME) and acted as an efficient Fenton reagent and photosensitizer, catalyzing the conversion of endogenous hydrogen peroxide(H_2O_2) within the tumor into oxygen(O_2), and hydroxyl radicals(·OH, type Ⅰ reactive oxygen species) and singlet oxygen(~1O_2, type Ⅱ reactive oxygen species), while depleting glutathione(GSH) to stabilize reactive oxygen species and alleviate tumor hypoxia. In vitro and in vivo experiments demonstrated that NCTD Gel exhibited significant CDT/PDT synergistic therapeutic effects. Further safety evaluation and metabolic testing confirmed its good biocompatibility and safety. This novel hydrogel is not only simple to prepare, safe, and cost-effective but also holds great potential for clinical transformation, providing insights and references for the research and development of metal ion-mediated hydrogel-based anti-tumor therapies.
Hydrogels/chemistry*
;
Animals
;
Photochemotherapy
;
Humans
;
Mice
;
Antineoplastic Agents/administration & dosage*
;
Photosensitizing Agents/chemistry*
;
Neoplasms/metabolism*
;
Female
;
Copper/chemistry*
;
Reactive Oxygen Species/metabolism*
;
Tumor Microenvironment/drug effects*
;
Cell Line, Tumor
;
Male
8.Effect and mechanism of salt-processed Phellodendri Chinensis Cortex in improving insulin resistance based on network pharmacology and experimental verification.
Jin-Jie LEI ; Yang-Miao XIA ; Shang-Ling ZHAO ; Rui TAN ; Ling-Ying YU ; Zhi-Min CHEN
China Journal of Chinese Materia Medica 2025;50(9):2373-2381
This study explores the therapeutic differences and mechanisms of salt-processed Phellodendri Chinensis Cortex in improving insulin resistance(IR) based on network pharmacology, molecular docking, and cellular experiments. The components and intersection targets of Phellodendri Chinensis Cortex in improving IR were collected from databases, and a "drug-component-target-disease" network and protein-protein interaction(PPI) network were constructed to screen core components and targets. A total of 29 active components and 240 intersection targets were identified, of which 13 were core targets. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were used to identify key signaling pathways, and molecular docking was performed to validate the binding activity between core components and targets. An IR model in HepG2 cells was induced using insulin combined with high glucose, and the effects of Phellodendri Chinensis Cortex before and after salt-processing on cell glucose consumption were evaluated. The expression of proteins related to the mitogen-activated protein kinase(MAPK) and phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT) signaling pathways was detected by Western blot. The cellular experimental results showed that, compared with the model group, glucose consumption in the drug-treated groups was significantly increased(P<0.01), the phosphorylation level of extracellular regulated protein kinase(ERK) was decreased(P<0.05), the phosphorylation levels of PI3K and AKT were increased, and the expression of glucose transporter 4(GLUT4) was also upregulated(P<0.05). Furthermore, the effect of salt-processed Phellodendri Chinensis Cortex was better than that of raw Phellodendri Chinensis Cortex. The study demonstrates that Phellodendri Chinensis Cortex, both before and after salt-processing, improves IR by regulating the expression of related proteins in the MAPK and PI3K-AKT signaling pathways, with enhanced effects after salt-processing.
Humans
;
Network Pharmacology
;
Phellodendron/chemistry*
;
Insulin Resistance
;
Drugs, Chinese Herbal/chemistry*
;
Hep G2 Cells
;
Signal Transduction/drug effects*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Glucose/metabolism*
9.Identification and expression analysis of AP2/ERF family members in Lonicera macranthoides.
Si-Min ZHOU ; Mei-Ling QU ; Juan ZENG ; Jia-Wei HE ; Jing-Yu ZHANG ; Zhi-Hui WANG ; Qiao-Zhen TONG ; Ri-Bao ZHOU ; Xiang-Dan LIU
China Journal of Chinese Materia Medica 2025;50(15):4248-4262
The AP2/ERF transcription factor family is a class of transcription factors widely present in plants, playing a crucial role in regulating flowering, flower development, flower opening, and flower senescence. Based on transcriptome data from flower, leaf, and stem samples of two Lonicera macranthoides varieties, 117 L. macranthoides AP2/ERF family members were identified, including 14 AP2 subfamily members, 61 ERF subfamily members, 40 DREB subfamily members, and 2 RAV subfamily members. Bioinformatics and differential gene expression analyses were performed using NCBI, ExPASy, SOMPA, and other platforms, and the expression patterns of L. macranthoides AP2/ERF transcription factors were validated via qRT-PCR. The results indicated that the 117 LmAP2/ERF members exhibited both similarities and variations in protein physicochemical properties, AP2 domains, family evolution, and protein functions. Differential gene expression analysis revealed that AP2/ERF transcription factors were primarily differentially expressed in the flowers of the two L. macranthoides varieties, with the differentially expressed genes mainly belonging to the ERF and DREB subfamilies. Further analysis identified three AP2 subfamily genes and two ERF subfamily genes as potential regulators of flower development, two ERF subfamily genes involved in flower opening, and two ERF subfamily genes along with one DREB subfamily gene involved in flower senescence. Based on family evolution and expression analyses, it is speculated that AP2/ERF transcription factors can regulate flower development, opening, and senescence in L. macranthoides, with ERF subfamily genes potentially serving as key regulators of flowering duration. These findings provide a theoretical foundation for further research into the specific functions of the AP2/ERF transcription factor family in L. macranthoides and offer important theoretical insights into the molecular mechanisms underlying floral phenotypic differences among its varieties.
Plant Proteins/chemistry*
;
Gene Expression Regulation, Plant
;
Transcription Factors/chemistry*
;
Lonicera/classification*
;
Flowers/metabolism*
;
Phylogeny
;
Gene Expression Profiling
;
Multigene Family
10.Dimethyloxalylglycine improves functional recovery through inhibiting cell apoptosis and enhancing blood-spinal cord barrier repair after spinal cord injury.
Wen HAN ; Chao-Chao DING ; Jie WEI ; Dan-Dan DAI ; Nan WANG ; Jian-Min REN ; Hai-Lin CHEN ; Ling XIE
Chinese Journal of Traumatology 2025;28(5):361-369
PURPOSE:
The secondary damage of spinal cord injury (SCI) starts from the collapse of the blood spinal cord barrier (BSCB) to chronic and devastating neurological deficits. Thereby, the retention of the integrity and permeability of BSCB is well-recognized as one of the major therapies to promote functional recovery after SCI. Previous studies have demonstrated that activation of hypoxia inducible factor-1α (HIF-1α) provides anti-apoptosis and neuroprotection in SCI. Endogenous HIF-1α, rapidly degraded by prolylhydroxylase, is insufficient for promoting functional recovery. Dimethyloxalylglycine (DMOG), a highly selective inhibitor of prolylhydroxylase, has been reported to have a positive effect on axon regeneration. However, the roles and underlying mechanisms of DMOG in BSCB restoration remain unclear. Herein, we aim to investigate pathological changes of BSCB restoration in rats with SCI treated by DOMG and evaluate the therapeutic effects of DMOG.
METHODS:
The work was performed from 2022 to 2023. In this study, Allen's impact model and human umbilical vein endothelial cells were employed to explore the mechanism of DMOG. In the phenotypic validation experiment, the rats were randomly divided into 3 groups: sham group, SCI group, and SCI + DMOG group (10 rats for each). Histological analysis via Nissl staining, Basso-Beattie-Bresnahan scale, and footprint analysis was used to evaluate the functional recovery after SCI. Western blotting, TUNEL assay, and immunofluorescence staining were employed to exhibit levels of tight junction and adhesion junction of BSCB, HIF-1α, cell apoptosis, and endoplasmic reticulum (ER) stress. The one-way ANOVA test was used for statistical analysis. The difference was considered statistically significant at p < 0.05.
RESULTS:
In this study, we observed the expression of HIF-1α reduced in the SCI model. DMOG treatment remarkably augmented HIF-1α level, alleviated endothelial cells apoptosis and disruption of BSCB, and enhanced functional recovery post-SCI. Besides, the administration of DMOG offset the activation of ER stress induced by SCI, but this phenomenon was blocked by tunicamycin (an ER stress activator). Finally, we disclosed that DMOG maintained the integrity and permeability of BSCB by inhibiting ER stress, and inhibition of HIF-1α erased the protection from DMOG.
CONCLUSIONS
Our findings illustrate that the administration of DMOG alleviates the devastation of BSCB and HIF-1α-induced inhibition of ER stress.
Spinal Cord Injuries/pathology*
;
Animals
;
Apoptosis/drug effects*
;
Amino Acids, Dicarboxylic/therapeutic use*
;
Recovery of Function/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Male
;
Spinal Cord/blood supply*

Result Analysis
Print
Save
E-mail