1.Expert consensus on neoadjuvant PD-1 inhibitors for locally advanced oral squamous cell carcinoma (2026)
LI Jinsong ; LIAO Guiqing ; LI Longjiang ; ZHANG Chenping ; SHANG Chenping ; ZHANG Jie ; ZHONG Laiping ; LIU Bing ; CHEN Gang ; WEI Jianhua ; JI Tong ; LI Chunjie ; LIN Lisong ; REN Guoxin ; LI Yi ; SHANG Wei ; HAN Bing ; JIANG Canhua ; ZHANG Sheng ; SONG Ming ; LIU Xuekui ; WANG Anxun ; LIU Shuguang ; CHEN Zhanhong ; WANG Youyuan ; LIN Zhaoyu ; LI Haigang ; DUAN Xiaohui ; YE Ling ; ZHENG Jun ; WANG Jun ; LV Xiaozhi ; ZHU Lijun ; CAO Haotian
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(2):105-118
Oral squamous cell carcinoma (OSCC) is a common head and neck malignancy. Approximately 50% to 60% of patients with OSCC are diagnosed at a locally advanced stage (clinical staging III-IVa). Even with comprehensive and sequential treatment primarily based on surgery, the 5-year overall survival rate remains below 50%, and patients often suffer from postoperative functional impairments such as difficulties with speaking and swallowing. Programmed death receptor-1 (PD-1) inhibitors are increasingly used in the neoadjuvant treatment of locally advanced OSCC and have shown encouraging efficacy. However, clinical practice still faces key challenges, including the definition of indications, optimization of combination regimens, and standards for efficacy evaluation. Based on the latest research advances worldwide and the clinical experience of the expert group, this expert consensus systematically evaluates the application of PD-1 inhibitors in the neoadjuvant treatment of locally advanced OSCC, covering combination strategies, treatment cycles and surgical timing, efficacy assessment, use of biomarkers, management of special populations and immune related adverse events, principles for immunotherapy rechallenge, and function preservation strategies. After multiple rounds of panel discussion and through anonymous voting using the Delphi method, the following consensus statements have been formulated: 1) Neoadjuvant therapy with PD-1 inhibitors can be used preoperatively in patients with locally advanced OSCC. The preferred regimen is a PD-1 inhibitor combined with platinum based chemotherapy, administered for 2-3 cycles. 2) During the efficacy evaluation of neoadjuvant therapy, radiographic assessment should follow the dual criteria of Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 and immune RECIST (iRECIST). After surgery, systematic pathological evaluation of both the primary lesion and regional lymph nodes is required. For combination chemotherapy regimens, PD-L1 expression and combined positive score need not be used as mandatory inclusion or exclusion criteria. 3) For special populations such as the elderly (≥ 70 years), individuals with stable HIV viral load, and carriers of chronic HBV/HCV, PD-1 inhibitors may be used cautiously under the guidance of a multidisciplinary team (MDT), with close monitoring for adverse events. 4) For patients with a poor response to neoadjuvant therapy, continuation of the original treatment regimen is not recommended; the subsequent treatment plan should be adjusted promptly after MDT assessment. Organ transplant recipients and patients with active autoimmune diseases are not recommended to receive neoadjuvant PD-1 inhibitor therapy due to the high risk of immune related activation. Rechallenge is generally not advised for patients who have experienced high risk immune related adverse events such as immune mediated myocarditis, neurotoxicity, or pneumonitis. 5) For patients with a good pathological response, individualized de escalation surgery and function preservation strategies can be explored. This consensus aims to promote the standardized, safe, and precise application of neoadjuvant PD-1 inhibitor strategies in the management of locally advanced OSCC patients.
2.Impact of Maxing Kugan Decoction on Inflammatory Response and Apoptosis in Oleic Acid-induced Acute Lung Injury in Rats via p38 MAPK/NF-κB Signaling Pathway
Taiqiang JIAO ; Yi NAN ; Ling YUAN ; Jiaqing LI ; Yang NIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):108-116
ObjectiveTo investigate the effects of Maxing Kugan decoction (MKD) on inflammatory response and apoptosis in rats with oleic acid (OA)-induced acute lung injury (ALI) and explore its mechanism of action. MethodsSixty Sprague-Dawley (SD) rats were randomly assigned into six groups: a control group, a model group, a dexamethasone-treated group (2 mg·kg-1), and three MKD-treated groups at low, medium, and high doses (3.1, 6.2,12.4 g·kg-1). Each group was administered either an equivalent volume of normal saline or the corresponding concentration of MKD by gavage for seven consecutive days. The model group and each administration group were used to establish the ALI model by tail vein injection of OA (0.2 mL·kg-1). Twelve hours after modeling, blood gas analyses were conducted, and the wet-to-dry (W/D) weight ratio of lung tissue was measured for each group. Additionally, enzyme-linked immunosorbent assay (ELISA) was employed to quantify the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the bronchoalveolar lavage fluid (BALF) of the rats. Cell damage and apoptosis in lung tissue were examined via hematoxylin-eosin (HE) staining and TdT-mediated dUTP-biotin nick end labeling (TUNEL) assays, and the results were subsequently scored. The expression levels of the p38 mitogen-activated protein kinase (p38 MAPK)/nuclear factor kappa-B (NF-κB) signaling pathway and apoptosis-related proteins and mRNAs were assessed using Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultsCompared with the control group, the model group exhibited a significant decrease in partial pressure of oxygen (PaO2), blood oxygen saturation (SaO2), and oxygenation index (PaO2/FiO2), along with a marked increase in partial pressure of carbon dioxide (PaCO2) and lung W/D ratio (P<0.01). Additionally, levels of TNF-α, IL-6, and IL-1β in BALF were significantly elevated (P<0.01). Histopathological analysis of lung tissue showed significant inflammatory infiltration, tissue edema, alveolar septal thickening, and apoptosis of lung tissue. Pronounced increases were observed in the mRNA expression levels of p38 MAPK, NF-κB p65, inhibitor of NF-κB (IκBα), B-cell lymphoma-2 associated x protein (Bax), and Caspases-3, as well as the protein expression levels of p-p38 MAPK, p-NF-κB p65, p-IκBα, Bax, Caspases-3, and cleaved Caspases-3, while the mRNA and protein expression of Bcl-2 was downregulated (P<0.01). Compared with the model group, MKD significantly elevated PaO2, SaO2, and PaO2/FiO2 while reducing PaCO2 and W/D ratio in rats (P<0.01). It also greatly reduced TNF-α, IL-6, and IL-1β levels in BALF (P<0.01) and alleviated inflammatory infiltration, tissue edema, alveolar septal thickening, and apoptosis of lung tissue. Additionally, it downregulated the mRNA expression of p38 MAPK, NF-κB p65, IκBα, Bax, Caspases-3, as well as protein expression of p-p38 MAPK, p-NF-κB p65, p-IκBα, Bax, Caspases-3, and cleaved Caspases-3 in lung tissue (P<0.05, P<0.01), while significantly upregulating mRNA and protein expression of Bcl-2 (P<0.01). ConclusionMKD exerts a protective effect on OA-induced ALI rats, potentially through the regulation of the p38 MAPK/NF-κB signaling pathway to inhibit inflammation and apoptosis.
3.Impact of Maxing Kugan Decoction on Inflammatory Response and Apoptosis in Oleic Acid-induced Acute Lung Injury in Rats via p38 MAPK/NF-κB Signaling Pathway
Taiqiang JIAO ; Yi NAN ; Ling YUAN ; Jiaqing LI ; Yang NIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):108-116
ObjectiveTo investigate the effects of Maxing Kugan decoction (MKD) on inflammatory response and apoptosis in rats with oleic acid (OA)-induced acute lung injury (ALI) and explore its mechanism of action. MethodsSixty Sprague-Dawley (SD) rats were randomly assigned into six groups: a control group, a model group, a dexamethasone-treated group (2 mg·kg-1), and three MKD-treated groups at low, medium, and high doses (3.1, 6.2,12.4 g·kg-1). Each group was administered either an equivalent volume of normal saline or the corresponding concentration of MKD by gavage for seven consecutive days. The model group and each administration group were used to establish the ALI model by tail vein injection of OA (0.2 mL·kg-1). Twelve hours after modeling, blood gas analyses were conducted, and the wet-to-dry (W/D) weight ratio of lung tissue was measured for each group. Additionally, enzyme-linked immunosorbent assay (ELISA) was employed to quantify the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the bronchoalveolar lavage fluid (BALF) of the rats. Cell damage and apoptosis in lung tissue were examined via hematoxylin-eosin (HE) staining and TdT-mediated dUTP-biotin nick end labeling (TUNEL) assays, and the results were subsequently scored. The expression levels of the p38 mitogen-activated protein kinase (p38 MAPK)/nuclear factor kappa-B (NF-κB) signaling pathway and apoptosis-related proteins and mRNAs were assessed using Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultsCompared with the control group, the model group exhibited a significant decrease in partial pressure of oxygen (PaO2), blood oxygen saturation (SaO2), and oxygenation index (PaO2/FiO2), along with a marked increase in partial pressure of carbon dioxide (PaCO2) and lung W/D ratio (P<0.01). Additionally, levels of TNF-α, IL-6, and IL-1β in BALF were significantly elevated (P<0.01). Histopathological analysis of lung tissue showed significant inflammatory infiltration, tissue edema, alveolar septal thickening, and apoptosis of lung tissue. Pronounced increases were observed in the mRNA expression levels of p38 MAPK, NF-κB p65, inhibitor of NF-κB (IκBα), B-cell lymphoma-2 associated x protein (Bax), and Caspases-3, as well as the protein expression levels of p-p38 MAPK, p-NF-κB p65, p-IκBα, Bax, Caspases-3, and cleaved Caspases-3, while the mRNA and protein expression of Bcl-2 was downregulated (P<0.01). Compared with the model group, MKD significantly elevated PaO2, SaO2, and PaO2/FiO2 while reducing PaCO2 and W/D ratio in rats (P<0.01). It also greatly reduced TNF-α, IL-6, and IL-1β levels in BALF (P<0.01) and alleviated inflammatory infiltration, tissue edema, alveolar septal thickening, and apoptosis of lung tissue. Additionally, it downregulated the mRNA expression of p38 MAPK, NF-κB p65, IκBα, Bax, Caspases-3, as well as protein expression of p-p38 MAPK, p-NF-κB p65, p-IκBα, Bax, Caspases-3, and cleaved Caspases-3 in lung tissue (P<0.05, P<0.01), while significantly upregulating mRNA and protein expression of Bcl-2 (P<0.01). ConclusionMKD exerts a protective effect on OA-induced ALI rats, potentially through the regulation of the p38 MAPK/NF-κB signaling pathway to inhibit inflammation and apoptosis.
4.Clinical practice guidelines for intraoperative cell salvage in patients with malignant tumors
Changtai ZHU ; Ling LI ; Zhiqiang LI ; Xinjian WAN ; Shiyao CHEN ; Jian PAN ; Yi ZHANG ; Xiang REN ; Kun HAN ; Feng ZOU ; Aiqing WEN ; Ruiming RONG ; Rong XIA ; Baohua QIAN ; Xin MA
Chinese Journal of Blood Transfusion 2025;38(2):149-167
Intraoperative cell salvage (IOCS) has been widely applied as an important blood conservation measure in surgical operations. However, there is currently a lack of clinical practice guidelines for the implementation of IOCS in patients with malignant tumors. This report aims to provide clinicians with recommendations on the use of IOCS in patients with malignant tumors based on the review and assessment of the existed evidence. Data were derived from databases such as PubMed, Embase, the Cochrane Library and Wanfang. The guideline development team formulated recommendations based on the quality of evidence, balance of benefits and harms, patient preferences, and health economic assessments. This study constructed seven major clinical questions. The main conclusions of this guideline are as follows: 1) Compared with no perioperative allogeneic blood transfusion (NPABT), perioperative allogeneic blood transfusion (PABT) leads to a more unfavorable prognosis in cancer patients (Recommended); 2) Compared with the transfusion of allogeneic blood or no transfusion, IOCS does not lead to a more unfavorable prognosis in cancer patients (Recommended); 3) The implementation of IOCS in cancer patients is economically feasible (Recommended); 4) Leukocyte depletion filters (LDF) should be used when implementing IOCS in cancer patients (Strongly Recommended); 5) Irradiation treatment of autologous blood to be reinfused can be used when implementing IOCS in cancer patients (Recommended); 6) A careful assessment of the condition of cancer patients (meeting indications and excluding contraindications) should be conducted before implementing IOCS (Strongly Recommended); 7) Informed consent from cancer patients should be obtained when implementing IOCS, with a thorough pre-assessment of the patient's condition and the likelihood of blood loss, adherence to standardized internally audited management procedures, meeting corresponding conditions, and obtaining corresponding qualifications (Recommended). In brief, current evidence indicates that IOCS can be implemented for some malignant tumor patients who need allogeneic blood transfusion after physician full evaluation, and LDF or irradiation should be used during the implementation process.
5.Efficacy and mechanism of Guizhi Tongluo Tablets in alleviating atherosclerosis by inhibiting CD72hi macrophages.
Xing-Ling HE ; Si-Jing LI ; Zi-Ru LI ; Dong-Hua LIU ; Xiao-Jiao ZHANG ; Huan HE ; Xiao-Ming DONG ; Wen-Jie LONG ; Wei-Wei ZHANG ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(5):1298-1309
This study investigates the effect and underlying mechanism of Guizhi Tongluo Tablets(GZTL) in treating atherosclerosis(AS) in a mouse model. Apolipoprotein E-knockout(ApoE~(-/-)) mice were randomly assigned to the following groups: model, high-, medium-, and low-dose GZTL, and atorvastatin(ATV), and age-matched C57BL/6J mice were selected as the control group. ApoE~(-/-) mice in other groups except the control group were fed with a high-fat diet for the modeling of AS and administrated with corresponding drugs via gavage for 8 weeks. General conditions, signs of blood stasis, and body mass of mice were monitored. Aortic plaques and their stability were assessed by hematoxylin-eosin, Masson, and oil red O staining. Serum levels of total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) were measured by biochemical assays, and those of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) were determined via enzyme-linked immunosorbent assay. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL). Single-cell RNA sequencing(scRNA-seq) was employed to analyze the differential expression of CD72hi macrophages(CD72hi-Mφ) in the aortas of AS patients and mice. The immunofluorescence assay was employed to visualize CD72hi-Mφ expression in mouse aortic plaques, and real-time fluorescence quantitative PCR was utilized to determine the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. The results demonstrated that compared with the control group, the model group exhibited significant increases in body mass, aortic plaque area proportion, necrotic core area proportion, and lipid deposition, a notable decrease in collagen fiber content, and an increase in apoptosis. Additionally, the model group showcased elevated serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6, alongside marked upregulations in the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. In comparison with the model group, the GZTL groups and the ATV group showed a reduction in body mass, and the medium-and high-dose GZTL groups and the ATV group demonstrated reductions in aortic plaque area proportion, necrotic core area proportion, and lipid deposition, an increase in collagen fiber content, and a decrease in apoptosis. Furthermore, the treatment goups showcased lowered serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6. The data of scRNA-seq revealed significantly elevated CD72hi-Mφ signaling in carotid plaques of AS patients compared with that in the normal arterial tissue. Animal experiments confirmed that CD72hi-Mφ expression, along with several pro-inflammatory cytokines, was significantly upregulated in the aortas of AS mice, which were downregulated by GZTL treatment. In conclusion, GZTL may alleviate AS by inhibiting CD72hi-Mφ activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atherosclerosis/immunology*
;
Mice
;
Mice, Inbred C57BL
;
Macrophages/immunology*
;
Male
;
Humans
;
Apolipoproteins E/genetics*
;
Tablets
;
Tumor Necrosis Factor-alpha/genetics*
;
Apoptosis/drug effects*
;
Interleukin-1beta/genetics*
;
Interleukin-6/genetics*
;
Disease Models, Animal
;
Mice, Knockout
6.Management of Cutaneous Immune-Related Adverse Events of Malignant Tumors Induced by Immune Checkpoint Inhibitors Based on Theory of "Fire and Original Qi are Restricted"
Shiliang SHAO ; Lijing JIAO ; Yichao WANG ; Decai WANG ; Qishan HUA ; Yabin GONG ; Ling XU
Journal of Traditional Chinese Medicine 2025;66(16):1656-1661
Guided by the theory of "fire and original qi are restricted", it is believed that original qi depletion is the root of the cutaneous immune-related adverse events (cirAEs) related to immune checkpoint inhibitors (ICIs), and the yin fire exuberance is the branch. Among them, original qi depletion is the internal foundation of the disease, while the drug toxicity of ICIs harming original qi is the initiating factor, and exuberant yin fire is the key pathogenesis. In clinical practice, the general treatment principle advocates banking up original qi to consolidate the root and draining fire to raise yang. Buzhong Yiqi Decoction (补中益气汤) can be used to activate transportation of middle jiao (焦) and promote ascent and dispersion of clear yang, thereby restoring the balance of qi and fire, and medicinals such as Huangqin (Radix Scutellariae), Huanglian (Rhizoma Coptidis) and Huangbai (Cortex Phellodendri Chinensis) can be supplementetd to clear and drain yin fire. At the same time, considering the accompanying symptoms such as dampness-stasis and fluids depletion, the methods of removing dampness and dispelling stasis, supplementing blood and nourishing yin should be added flexibly. This approach can provide a new perspective and treatment strategy for reducing ICIs-related cirAEs in malignant tumors.
7.Treatment Strategies for Postoperative Complications of Lung Cancer from Protecting Healthy Qi and Treating Qi
Jiajun SONG ; Yichao WANG ; Xueqi TIAN ; Yi LIU ; Lijing JIAO ; Ling XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):94-105
Pulmonary complications, the most common postoperative complications of lung cancer, not only affect the quality of life of the patients after surgery but also increase the prognostic risks of postoperative recurrence and metastasis, threatening the life safety. At present, a multidisciplinary model of diagnosis and rehabilitation with integrated traditional Chinese medicine (TCM) and Western medicine has been initially formed under the guidance of the concept of rapid rehabilitation post operation for lung cancer. However, the treatment that only aims at shortening hospital stay and reducing the incidence of postoperative complications does not pay enough attention to the postoperative functional rehabilitation of the lung and the impact of follow-up adjuvant therapy, which affects the completeness of rehabilitation. This paper classifies the typical postoperative symptoms and manifestations of lung cancer into five groups: Lung system, emotion, digestive tract, pain, and nerve. On this basis, this paper summarizes the three core pathogeneses of postoperative complications of lung cancer as failure of Qi to ascend and descend leading to insecurity of defensive exterior, vessel block leading to Qi stagnation and fluid retention, and lung Qi deficiency leading to spleen and kidney deficiency. Accordingly, this paper proposes the treatment principle of protecting healthy Qi and treating Qi with the core of descending-tonifying-ascending-dispersing Qi and puts forward three treatment methods. The first is replenishing Qi and consolidating exterior, and expelling phlegm and regulating lung. The second is replenishing Qi and promoting blood flow to resolve stasis and relieving pain. The third is replenishing Qi and tonifying lung, and invigorating spleen and tonifying kidney. Furthermore, this paper elaborates on the pathogenesis and treatment principles of four common postoperative complications: Lung infection, pleural effusion, atelectasis, and bronchopleural fistula. On the basis of Western medical treatment, the TCM treatment characteristics of treating symptoms in the acute phase and eradicating the root cause in the chronic phase should be played. While dispelling the pathogen, measures should be taken to protect the healthy Qi, including tonifying lung Qi, regulating spleen Qi, and replenishing kidney Qi. This study summarizes the pathogenesis and treatment strategy of common postoperative complications of lung cancer according to the principle of protecting healthy Qi and treating Qi, aiming to provide guidance for the future treatment of postoperative complications of lung cancer.
8.Factors influencing secondary diarrhea in pediatric inpatients with pneumonia
Yaxiu ZHANG ; Wei HUANG ; Ling LIU ; Jiao CHEN
Journal of Public Health and Preventive Medicine 2025;36(5):177-180
Objective To explore the possible influencing factors of secondary diarrhea in pediatric inpatients with pneumonia. Methods A total of 122 pediatric inpatients with pneumonia who developed secondary diarrhea, admitted to the Department of Pediatrics at the First Hospital of Qinhuangdao, Hebei Province, from January 2019 to March 2024, were selected as the case group. Another 266 pediatric inpatients with pneumonia admitted during the same period who did not develop secondary diarrhea were selected as the control group. Basic information such as gender, age, length of hospital stay, and fever reduction time of the pediatric inpatients with pneumonia was collected. Additionally, binT lymphocyte subpopulations and intestinal flora-related indicators were tested. Univariate analysis and unconditional logistic regression multivariate analysis were used to analyze the possible influencing factors of secondary diarrhea in pediatric inpatients with pneumonia. Results The multivariate results showed that after adjusting for gender, the risk of secondary diarrhea in pediatric inpatients with pneumonia decreased to 90.8% of the original risk with each additional year of age (OR=0.908, 95% CI=0.869-0.948, P<0.001). For every 1 CFU/g increase in the number of Bifidobacterium colonies, the risk of secondary diarrhea decreased to 91.6% of the original risk (OR=0.916, 95% CI=0.865-0.969, P<0.001). For every 1 CFU/g increase in the number of Lactobacillus colonies, the risk decreased to 91.1% of the original risk (OR=0.911, 95% CI=0.881-0.942, P<0.001). For every 1 CFU/g increase in the number of Enterococcus colonies, the risk decreased to 91.5% of the original risk (OR=0.864, 95% CI=0.864-0.968, P<0.001). Conclusions Age, the number of Bifidobacterium colonies, the number of Lactobacillus colonies, and the number of Enterococcus colonies are independent influencing factors of secondary diarrhea in pediatric inpatients with pneumonia.
10.Research progress of the interaction between RAAS and clock genes in cardiovascular diseases.
Rui-Ling MA ; Yi-Yuan WANG ; Yu-Shun KOU ; Lu-Fan SHEN ; Hong WANG ; Ling-Na ZHANG ; Jiao TIAN ; Lin YI
Acta Physiologica Sinica 2025;77(4):669-677
The renin-angiotensin-aldosterone system (RAAS) is crucial for regulating blood pressure and maintaining fluid balance, while clock genes are essential for sustaining biological rhythms and regulating metabolism. There exists a complex interplay between RAAS and clock genes that may significantly contribute to the development of various cardiovascular and metabolic diseases. Although current literature has identified correlations between these two systems, the specific mechanisms of their interaction remain unclear. Moreover, the interaction patterns under different physiological and pathological conditions need further investigation. This review summarizes the synergistic roles of the RAAS and clock genes in cardiovascular diseases, explores their molecular mechanisms and pathophysiological connections, discusses the application of chronotherapy, and highlights potential future research directions, aiming to provide novel insights for the prevention and treatment of related diseases.
Humans
;
Renin-Angiotensin System/genetics*
;
Cardiovascular Diseases/genetics*
;
CLOCK Proteins/physiology*
;
Animals


Result Analysis
Print
Save
E-mail