1.Paroxetine alleviates dendritic cell and T lymphocyte activation via GRK2-mediated PI3K-AKT signaling in rheumatoid arthritis.
Tingting LIU ; Chao JIN ; Jing SUN ; Lina ZHU ; Chun WANG ; Feng XIAO ; Xiaochang LIU ; Liying LV ; Xiaoke YANG ; Wenjing ZHOU ; Chao TAN ; Xianli WANG ; Wei WEI
Chinese Medical Journal 2025;138(4):441-451
BACKGROUND:
G protein-coupled receptor kinase 2 (GRK2) could participate in the regulation of diverse cells via interacting with non-G-protein-coupled receptors. In the present work, we explored how paroxetine, a GRK2 inhibitor, modulates the differentiation and activation of immune cells in rheumatoid arthritis (RA).
METHODS:
The blood samples of healthy individuals and RA patients were collected between July 2021 and March 2022 from the First Affiliated Hospital of Anhui Medical University. C57BL/6 mice were used to induce the collagen-induced arthritis (CIA) model. Flow cytometry analysis was used to characterize the differentiation and function of dendritic cells (DCs)/T cells. Co-immunoprecipitation was used to explore the specific molecular mechanism.
RESULTS:
In patients with RA, high expression of GRK2 in peripheral blood lymphocytes, accompanied by the increases of phosphatidylinositol 3 kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR). In animal model, a decrease in regulatory T cells (T regs ), an increase in the cluster of differentiation 8 positive (CD8 + ) T cells, and maturation of DCs were observed. Paroxetine, when used in vitro and in CIA mice, restrained the maturation of DCs and the differentiation of CD8 + T cells, and induced the proportion of T regs . Paroxetine inhibited the secretion of pro-inflammatory cytokines, the expression of C-C motif chemokine receptor 7 in DCs and T cells. Simultaneously, paroxetine upregulated the expression of programmed death ligand 1, and anti-inflammatory cytokines. Additionally, paroxetine inhibited the PI3K-AKT-mTOR metabolic pathway in both DCs and T cells. This was associated with a reduction in mitochondrial membrane potential and changes in the utilization of glucose and lipids, particularly in DCs. Paroxetine reversed PI3K-AKT pathway activation induced by 740 Y-P (a PI3K agonist) through inhibiting the interaction between GRK2 and PI3K in DCs and T cells.
CONCLUSION
Paroxetine exerts an immunosuppressive effect by targeting GRK2, which subsequently inhibits the metabolism-related PI3K-AKT-mTOR pathway of DCs and T cells in RA.
G-Protein-Coupled Receptor Kinase 2/metabolism*
;
Arthritis, Rheumatoid/immunology*
;
Animals
;
Dendritic Cells/metabolism*
;
Paroxetine/therapeutic use*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Mice
;
Humans
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Male
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Lymphocyte Activation/drug effects*
;
Female
;
T-Lymphocytes/metabolism*
;
Middle Aged
2.Three-Dimensional Reconstruction Technique and Its Application of Binocular Endoscopic Images Based on Deep Learning.
Lina HUANG ; Shenglin LIU ; Qingmin FENG ; Haolong JIN ; Qiang ZHANG
Chinese Journal of Medical Instrumentation 2025;49(2):161-168
The clinical application of binocular endoscope relies primarily on the visual system of physicians to create a three-dimensional effect, but it cannot provide accurate depth information. The utilization of 3D reconstruction technology in binocular endoscopy can facilitate the recovery of image depth information, and the application of deep learning-based 3D reconstruction technology can significantly improve the accuracy and real-time performance of reconstruction results, making it widely applicable in the realm of minimally invasive surgery. This paper aims to explore the key technologies and implementation methods of deep learning based 3D reconstruction for binocular endoscopic images, and seeks to outline strategies for enhancing the quality of 3D reconstruction in endoscopic images, providing guidance for sustainable development of binocular endoscopic image reconstruction technology in clinical settings. This will assist in the application of minimally invasive surgery and contribute to meeting the demands of precision medicine.
Deep Learning
;
Imaging, Three-Dimensional/methods*
;
Humans
;
Endoscopy/methods*
;
Image Processing, Computer-Assisted/methods*
;
Minimally Invasive Surgical Procedures
3.Submicron-sized superantigen biomimetic liposomes with highly efficient pulmonary accumulation to remodel local immune microenvironment for cancer chemoimmunotherapy.
Bochuan YUAN ; Feng ZHANG ; Qiucheng YAN ; Wanmei WANG ; Zhangyu LI ; Lina DU ; Yiguang JIN ; Fei XIE
Acta Pharmaceutica Sinica B 2025;15(6):2900-2914
Metastatic lung cancer continues to cause a high number of deaths due to high malignancy and poor prognosis, and the efficacy of typical chemotherapy or immunotherapy is less than ideal due to the low pulmonary accumulation and targeting of therapeutics. Here, a submicron-sized biomimetic liposome was formulated for the lung-targeted co-delivery of bacterial superantigen and paclitaxel. Recombinant staphylococcal enterotoxin C2 (rSEC2), a bacterial superantigen, was expressed with the Escherichia coli system and showed potent immunostimulatory activities to mediate tumor cell death. The submicron-sized (∼800 nm) biomimetic liposomes, namely 4T1 cell membrane-hybrid rSEC2 paclitaxel liposomes (TSPLs), exhibited high lung-accumulation efficiency and tumor homologous effect due to the suitable particle size and membrane hybridization of cancer cell membranes with phospholipids. Intravenous TSPLs remarkably inhibited metastatic lung cancer with limited systemic immune responses. TSPLs reversed the immunosuppressive state and increased the proportion of local CD4+ and CD8+ T cells in the lung; moreover, paclitaxel increased tumor cell apoptosis and reduced tumor burden. In summary, the high lung cancer targeting was achieved by particle size control and cell membrane hybridization, and the highly efficient anticancer effect was achieved by the co-delivery of superantigens and chemotherapeutic drugs.
4.Lacticaseibacillus paracasei E6 improves vinorelbine-induced immunosuppression in zebrafish through its metabolites acetic acid and propionic acid.
Xu XINZHU ; Lina GUO ; Kangdi ZHENG ; Yan MA ; Shuxian LIN ; Yingxi HE ; Wen SHENG ; Suhua XU ; Feng QIU
Journal of Southern Medical University 2025;45(2):331-339
OBJECTIVES:
To explore the mechanism of Lacticaseibacillus paracasei E6 for improving vinorelbine-induced immunosuppression in zebrafish.
METHODS:
The intestinal colonization of L. paracasei E6 labeled by fluorescein isothiocyanate (FITC) in zebrafish was observed under fluorescence microscope. In a zebrafish model of vinorelbine-induced immunosuppression, the immunomodulatory activity of L. paracasei E6 was assessed by analyzing macrophage and neutrophil counts in the caudal hematopoietic tissue (CHT), the number of T-lymphocyte, and the expressions of interleukin-12 (IL-12) and interferon-γ (IFN-γ). The contents of short-chain fatty acids (SCFAs) in L. paracasei E6 fermentation supernatant and the metabolites of L. paracasei E6 in zebrafish were detected by LC-MS/MS-based targeted metabolomics. The immunomodulatory effects of the SCFAs including sodium acetate, sodium propionate and sodium butyrate were evaluated in the zebrafish model of immunosuppression.
RESULTS:
After inoculation, green fluorescence of FITC-labeled L. paracasei E6 was clearly observed in the intestinal ball, midgut and posterior gut regions of zebrafish. In the immunocompromised zebrafish model, L. paracasei E6 significantly alleviated the reduction of macrophage and neutrophil counts in the CHT, increased the fluorescence intensity of T-lymphocytes, and promoted the expressions of IL-12 and IFN-γ. Compared with MRS medium, L. paracasei E6 fermentation supernatant showed significantly higher levels of acetic acid, propionic acid and butyric acid, which were also detected in immunocompromised zebrafish following treatment with L. paracasei E6. Treatment of the zebrafish model with sodium acetate and sodium propionate significantly increased macrophage and neutrophil counts in the CHT and effectively inhibited vinorelbine-induced reduction of thymus T cells.
CONCLUSIONS
L. paracasei E6 can improve vinorelbine-induced immunosuppression in zebrafish through its SCFA metabolites acetic acid and propionic acid.
Animals
;
Zebrafish/immunology*
;
Acetic Acid/metabolism*
;
Propionates/metabolism*
;
Fatty Acids, Volatile/metabolism*
5.Lactobacillus plantarum ZG03 alleviates oxidative stress via its metabolites short-chain fatty acids.
Shuxian LIN ; Lina GUO ; Yan MA ; Yao XIONG ; Yingxi HE ; Xinzhu XU ; Wen SHENG ; Suhua XU ; Feng QIU
Journal of Southern Medical University 2025;45(10):2223-2230
OBJECTIVES:
To investigate the efficacy of Lactobacillus plantarum ZG03 (L. plantarum ZG03) for ameliorating oxidative stress in zebrafish.
METHODS:
We evaluated the growth pattern of L. plantarum ZG03, observed its morphology using field emission scanning electron microscopy, and assessed its safety and potential efficacy with whole-genome sequencing for genetic analysis. FITC-labeled ZG03 was used to observe its intestinal colonization in zebrafish. In a zebrafish model of 2% glucose-induced oxidative stress, the effect of ZG03 was evaluated by assessing the changes in neutrophils in the caudal hematopoietic tissue (CHT), superoxide dismutase (SOD) activity, reactive oxygen species (ROS) levels, and malondialdehyde (MDA) content. Liquid chromatography-mass spectrometry-based targeted metabolomics was used for analyzing short-chain fatty acids (SCFAs) in the zebrafish, and the antioxidant effects of the key metabolites (acetate, propionate, and caproate) were tested.
RESULTS:
On MRS agar, L. plantarum ZG03 formed circular, smooth, moist, and milky-white colonies with a rod-shaped cell morphology. Genomic analysis revealed abundant sugar metabolism gene clusters. After inoculation of FITC-labeled L. plantarum ZG03 in zebrafish, green fluorescence was clearly observed in the intestinal bulb, mid-intestine, and hind intestine. In zebrafish with glucose-induced oxidative stress, L. plantarum ZG03 significantly reduced ROS levels and the number of neutrophils in the CHT with increased SOD activity. L.plantarum ZG03 significantly increased the content of SCFAs including acetic acid, propionic acid, and caproic acid in zebrafish metabolites. In addition, sodium acetate, sodium propionate, and sodium caproate in the SCFAs significantly increased SOD activity in the zebrafish models.
CONCLUSIONS
L. plantarum ZG03 ameliorates oxidative stress in a glucose-induced zebrafish model through its metabolites, particularly the SCFAs including acetic acid, propionic acid and caproic acid.
Animals
;
Zebrafish/metabolism*
;
Oxidative Stress
;
Lactobacillus plantarum/metabolism*
;
Fatty Acids, Volatile/metabolism*
;
Probiotics
;
Reactive Oxygen Species/metabolism*
;
Superoxide Dismutase/metabolism*
6.Expert consensus on digital restoration of complete dentures.
Yue FENG ; Zhihong FENG ; Jing LI ; Jihua CHEN ; Haiyang YU ; Xinquan JIANG ; Yongsheng ZHOU ; Yumei ZHANG ; Cui HUANG ; Baiping FU ; Yan WANG ; Hui CHENG ; Jianfeng MA ; Qingsong JIANG ; Hongbing LIAO ; Chufan MA ; Weicai LIU ; Guofeng WU ; Sheng YANG ; Zhe WU ; Shizhu BAI ; Ming FANG ; Yan DONG ; Jiang WU ; Lin NIU ; Ling ZHANG ; Fu WANG ; Lina NIU
International Journal of Oral Science 2025;17(1):58-58
Digital technologies have become an integral part of complete denture restoration. With advancement in computer-aided design and computer-aided manufacturing (CAD/CAM), tools such as intraoral scanning, facial scanning, 3D printing, and numerical control machining are reshaping the workflow of complete denture restoration. Unlike conventional methods that rely heavily on clinical experience and manual techniques, digital technologies offer greater precision, predictability, and efficacy. They also streamline the process by reducing the number of patient visits and improving overall comfort. Despite these improvements, the clinical application of digital complete denture restoration still faces challenges that require further standardization. The major issues include appropriate case selection, establishing consistent digital workflows, and evaluating long-term outcomes. To address these challenges and provide clinical guidance for practitioners, this expert consensus outlines the principles, advantages, and limitations of digital complete denture technology. The aim of this review was to offer practical recommendations on indications, clinical procedures and precautions, evaluation metrics, and outcome assessment to support digital restoration of complete denture in clinical practice.
Humans
;
Denture, Complete
;
Computer-Aided Design
;
Denture Design/methods*
;
Consensus
;
Printing, Three-Dimensional
7.The chordata olfactory receptor database.
Wei HAN ; Siyu BAO ; Jintao LIU ; Yiran WU ; Liting ZENG ; Tao ZHANG ; Ningmeng CHEN ; Kai YAO ; Shunguo FAN ; Aiping HUANG ; Yuanyuan FENG ; Guiquan ZHANG ; Ruiyi ZHANG ; Hongjin ZHU ; Tian HUA ; Zhijie LIU ; Lina CAO ; Xingxu HUANG ; Suwen ZHAO
Protein & Cell 2025;16(4):286-295
8.Inhibition of triggering receptor expressed on myeloid cells-1(TREM-1)attenuates chronic intermittent hypoxia-induced atherosclerosis in mouse models
Hanqiao YU ; Chao LI ; Yubin YU ; Lina FENG ; Xiaosheng SHENG ; Xiaoxia YE ; Linyan WANG
Basic & Clinical Medicine 2024;44(3):368-373
Objective To investigate the role of triggering receptor expressed on myeloid cells-1(TREM-1)in ath-erosclerosis induced by chronic intermittent hypoxia(CIH).Methods ApoE-/-mice were randomly divided into blank group,model group and experimental group.The mice in the model group and the experimental group were kept in a hypoxic environment and fed with a high-fat diet.After 4 weeks of high-fat feeding,mice in the experi-mental group were intraperitoneally injected with TREM-1 inhibitor LR12(5 mg/kg)for 8 weeks.After 12 weeks of feeding,the level of serum total cholesterol(TC),low density lipoprotein(LDL),triglyceride(TG),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β)and interleukin-10(IL-10)were detected.Histological analysis of aortic TREM-1 expression,plaque area and macrophage level were examined.Results Compared with blank group,the expression of TREM-1 in the aorta of the model group significantly increased(P<0.05).Com-pared with model group,the aortic plaque,the level of lipids in serum(TC,LDL,TG)and inflammatory factors(TNF-α,IL-1β,IL-10),aortic plaque,the expression of TREM-1 and infiltrating macrophages in aortic plaque of the experimental group were all significantly reduced(P<0.05).Conclusions TREM-1 is involved in the develop-ment of CIH-induced AS.Inhibition of TREM-1 can alleviate CIH-induced AS and its mechanism is related to the inhibition of macrophage activation.
9.Expert consensus on the workflow of digital aesthetic design in prosthodontics
Zhonghao LIU ; Feng LIU ; Jiang CHEN ; Cui HUANG ; Xianglong HAN ; Wenjie HU ; Chun XU ; Weicai LIU ; Lina NIU ; Chufan MA ; Yijiao ZHAO ; Ke ZHAO ; Ming ZHENG ; Yaming CHEN ; Qingfeng HUANG ; Yi MAN ; Mingming XU ; Xuliang DENG ; Ti ZHOU ; Xiaorui SHI
Journal of Practical Stomatology 2024;40(2):156-163
In the field of dental aesthetics,digital aesthetic design plays a crucial role in helping dentists to predict treatment outcomes vis-ually,as well as in enhancing the consistency of knowledge and understanding of aesthetic goals between dentists and patients.It serves as the foundation for achieving ideal aesthetic effects.However,there is no clear standard for this digital process currently in China and abroad.Many dentists lack of systematic understanding of how to carry out digital aesthetic design for treatment.To establish standardized processes for dental aesthetic design and to improve the homogeneity of treatment outcomes,Chinese Society of Digital Dental Industry(CSD-DI)convened domestic experts in related field to compile this consensus.This article elaborates on the key aspects of digital aesthetic data collection,integration steps,and the digital aesthetic design process.It also formulates a decision tree for dental aesthetics at macro level and outlines corresponding workflows for various clinical scenarios,serving as a reference for clinicians.
10.Bacterial pathogen spectrum and drug resistance in respiratory intensive care unit in 2020- 2022
Juan LI ; Tu LYU ; Lina FENG ; Qianyu FENG ; Yun HUANG ; Congrong LI ; Xuan CAI
Journal of Public Health and Preventive Medicine 2024;35(6):89-92
Objective To understand the infectious pathogen characteristics and drug sensitivity of hospitalized patients in the respiratory intensive care unit (RICU) of Renmin Hospital of Wuhan University. Methods Bacterial culture samples sent to the RICU of our hospital from January 2020 to December 2022 were retrospectively analyzed. The bacterial types were identified by Bruker mass spectrometer, and the Phoenix 100 was used for drug sensitivity analysis. The antimicrobial susceptibility was analyzed by WHONET 5.6 software. Results A total of 1 157 strains of bacteria were isolated, including 878 strains of Gram-negative bacteria (75.89%) and 279 strains of Gram-positive bacteria (24.11%). The top five with the highest detection rate were Acinetobacter baumannii (25.50%), Pseudomonas aeruginosa (18.76%), Klebsiella pneumoniae (13.83%), Staphylococcus aureus (6.57%) and Escherichia coli (5.70%). Among them, Acinetobacter baumannii was extremely drug-resistant, only showing relatively high sensitivity to colistin, minocycline, and tigecycline. Staphylococcus aureus accounted for the highest proportion of Gram-positive bacteria (6.57%), with methicillin-resistant Staphylococcus (MRSA) showing a continuous increase. Conclusion In the past three years, Gram-negative bacteria have been the main pathogenic bacteria detected in the respiratory intensive care unit of our hospital. The main bacteria are Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae, which have a high resistance rate to various antibiotics. Therefore, clinical monitoring of resistant strains in RICU should be strengthened to facilitate rational use of antibiotics and improve antibacterial effect.


Result Analysis
Print
Save
E-mail