1.Effect and Mechanism of Angelicae Sinensis Radix-Polygonati Rhizoma Herb Pair in Treatment of Simple Obesity
Wenjing LI ; Zhongyu WANG ; Yongxin HUANG ; Jingjing XU ; Ying DING ; You WU ; Zhiwei QI ; Ruifeng YANG ; Xiaotong YANG ; Lili WU ; Lingling QIN ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):70-79
ObjectiveTo preliminarily explore the active components and target pathways of Angelicae Sinensis Radix-Polygonati Rhizoma (ASR-PR) herb pair in the treatment of simple obesity through network pharmacology and molecular docking, and to verify and investigate its mechanism of action via animal experiments. MethodsThe chemical constituents and targets of ASR and PR were predicted using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets related to simple obesity were identified by retrieving the GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), and DisGeNET databases. The intersection of drug and disease targets was used to construct an active component-target network using Cytoscape software. This network was imported into the STRING database to construct a protein-protein interaction (PPI) network, and topological analysis was conducted to identify core genes. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and mapping were performed using the DAVID database and the Microbioinformatics platform. AutoDock 1.5.7 software was used to perform molecular docking between the top five active components and core targets. An animal model of simple obesity was established by feeding C57BL/6J mice a high-fat diet. The mice were administered ASR (2.06 g·kg-1), PR (2.06 g·kg-1), or ASR-PR (4.11 g·kg-1) for 10 weeks, while the model group received an equal volume of purified water by gavage. After the administration period, the mice were sacrificed to measure body fat weight and serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Hematoxylin-eosin (HE) staining was used to observe histopathological sections of liver and adipose tissue. Serum levels of leptin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression levels of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) in liver tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsNetwork pharmacology and molecular docking results indicated that the treatment of simple obesity by ASR-PR may involve the regulation of protein expression of core targets EGFR and STAT3 by its main components MOL009760 (Siberian glycoside A_qt), MOL003889 (methyl protodioscin_qt), MOL009766 (resveratrol), MOL006331 (4′,5-dihydroxyflavone), and MOL004941 (baicalin), thereby modulating the PI3K/Akt and JAK/STAT signaling pathways. The animal experiment results showed that compared with the normal group, the model group had significantly increased body weight, body fat weight, and serum levels of TG, TC, TNF-α, IL-6, and leptin (P<0.01). EGFR mRNA expression was significantly elevated (P<0.05), while STAT3 mRNA expression was significantly decreased (P<0.01). Histological analysis revealed disordered hepatic architecture in the model group, with pronounced lipid vacuoles, cytoplasmic loosening, lipid accumulation, and steatosis. Adipocytes in white adipose tissue (WAT) and brown adipose tissue (BAT) of the model group exhibited markedly increased diameters, reduced cell counts per unit area, and irregular morphology. Compared with the model group, the ASR-PR group significantly reduced body weight, body fat weight, serum TC, IL-6, TNF-α, leptin levels, and EGFR mRNA expression (P<0.01). TG levels were also significantly decreased (P<0.05), while STAT3 mRNA expression was significantly increased (P<0.01). Histopathological improvements included reduced size and number of hepatic lipid vacuoles and restoration of liver cell morphology toward that of the normal group. The diameter of adipocytes significantly decreased, and the number of adipocytes per unit area increased. ConclusionASR-PR may regulate the expression of key target proteins such as EGFR and STAT3 via its core active components, modulate the PI3K/Akt and JAK/STAT signaling pathways, repair damaged liver and adipose tissues, and thereby alleviate the progression of obesity in mice.
2.Effect and Mechanism of Angelicae Sinensis Radix-Polygonati Rhizoma Herb Pair in Treatment of Simple Obesity
Wenjing LI ; Zhongyu WANG ; Yongxin HUANG ; Jingjing XU ; Ying DING ; You WU ; Zhiwei QI ; Ruifeng YANG ; Xiaotong YANG ; Lili WU ; Lingling QIN ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):70-79
ObjectiveTo preliminarily explore the active components and target pathways of Angelicae Sinensis Radix-Polygonati Rhizoma (ASR-PR) herb pair in the treatment of simple obesity through network pharmacology and molecular docking, and to verify and investigate its mechanism of action via animal experiments. MethodsThe chemical constituents and targets of ASR and PR were predicted using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets related to simple obesity were identified by retrieving the GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), and DisGeNET databases. The intersection of drug and disease targets was used to construct an active component-target network using Cytoscape software. This network was imported into the STRING database to construct a protein-protein interaction (PPI) network, and topological analysis was conducted to identify core genes. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and mapping were performed using the DAVID database and the Microbioinformatics platform. AutoDock 1.5.7 software was used to perform molecular docking between the top five active components and core targets. An animal model of simple obesity was established by feeding C57BL/6J mice a high-fat diet. The mice were administered ASR (2.06 g·kg-1), PR (2.06 g·kg-1), or ASR-PR (4.11 g·kg-1) for 10 weeks, while the model group received an equal volume of purified water by gavage. After the administration period, the mice were sacrificed to measure body fat weight and serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Hematoxylin-eosin (HE) staining was used to observe histopathological sections of liver and adipose tissue. Serum levels of leptin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression levels of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) in liver tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsNetwork pharmacology and molecular docking results indicated that the treatment of simple obesity by ASR-PR may involve the regulation of protein expression of core targets EGFR and STAT3 by its main components MOL009760 (Siberian glycoside A_qt), MOL003889 (methyl protodioscin_qt), MOL009766 (resveratrol), MOL006331 (4′,5-dihydroxyflavone), and MOL004941 (baicalin), thereby modulating the PI3K/Akt and JAK/STAT signaling pathways. The animal experiment results showed that compared with the normal group, the model group had significantly increased body weight, body fat weight, and serum levels of TG, TC, TNF-α, IL-6, and leptin (P<0.01). EGFR mRNA expression was significantly elevated (P<0.05), while STAT3 mRNA expression was significantly decreased (P<0.01). Histological analysis revealed disordered hepatic architecture in the model group, with pronounced lipid vacuoles, cytoplasmic loosening, lipid accumulation, and steatosis. Adipocytes in white adipose tissue (WAT) and brown adipose tissue (BAT) of the model group exhibited markedly increased diameters, reduced cell counts per unit area, and irregular morphology. Compared with the model group, the ASR-PR group significantly reduced body weight, body fat weight, serum TC, IL-6, TNF-α, leptin levels, and EGFR mRNA expression (P<0.01). TG levels were also significantly decreased (P<0.05), while STAT3 mRNA expression was significantly increased (P<0.01). Histopathological improvements included reduced size and number of hepatic lipid vacuoles and restoration of liver cell morphology toward that of the normal group. The diameter of adipocytes significantly decreased, and the number of adipocytes per unit area increased. ConclusionASR-PR may regulate the expression of key target proteins such as EGFR and STAT3 via its core active components, modulate the PI3K/Akt and JAK/STAT signaling pathways, repair damaged liver and adipose tissues, and thereby alleviate the progression of obesity in mice.
3.A prediction model for high-risk cardiovascular disease among residents aged 35 to 75 years
ZHOU Guoying ; XING Lili ; SU Ying ; LIU Hongjie ; LIU He ; WANG Di ; XUE Jinfeng ; DAI Wei ; WANG Jing ; YANG Xinghua
Journal of Preventive Medicine 2025;37(1):12-16
Objective:
To establish a prediction model for high-risk cardiovascular disease (CVD) among residents aged 35 to 75 years, so as to provide the basis for improving CVD prevention and control measures.
Methods:
Permanent residents aged 35 to 75 years were selected from Dongcheng District, Beijing Municipality using the stratified random sampling method from 2018 to 2023. Demographic information, lifestyle, waist circumference and blood biochemical indicators were collected through questionnaire surveys, physical examinations and laboratory tests. Influencing factors for high-risk CVD among residents aged 35 to 75 years were identified using a multivariable logistic regression model, and a prediction model for high-risk CVD was established. The predictive effect was evaluated using the receiver operating characteristic (ROC) curve.
Results:
A total of 6 968 individuals were surveyed, including 2 821 males (40.49%) and 4 147 females (59.51%), and had a mean age of (59.92±9.33) years. There were 1 155 high-risk CVD population, with a detection rate of 16.58%. Multivariable logistic regression analysis showed that gender, age, smoking, central obesity, systolic blood pressure, fasting blood glucose, triglyceride and low-density lipoprotein cholesterol were influencing factors for high-risk CVD among residents aged 35 to 75 years (all P<0.05). The area under the ROC curve of the established prediction model was 0.849 (95%CI: 0.834-0.863), with a sensitivity of 0.693 and a specificity of 0.863, indicating good discrimination.
Conclusion
The model constructed by eight factors including demographic characteristics, lifestyle and blood biochemical indicators has good predictive value for high-risk CVD among residents aged 35 to 75 years.
4.Study on the mechanism of Cuscuta chinensis flavonoids promoting decidualization and improving recurrent spontaneous abortion
Fang FANG ; Ying CUI ; Jialü HUANG ; Lili CHEN ; Jia XU ; Yunhui WAN
China Pharmacy 2025;36(19):2379-2386
OBJECTIVE To explore the mechanism by which Cuscuta chinensis flavonoids (CCF) promote decidualization and improve recurrent spontaneous abortion (RSA). METHODS HTR-8/SVneo cells in logarithmic growth phase were randomly divided into blank group, lipopolysaccharide (LPS) group, CCF group, SGK2 inhibitor (GSK650394, abbreviated as “GSK”) group and CCF+GSK group. Each group was treated with the corresponding agents accordingly. HTR-8/SVneo cells with SGK2 knockdown were randomly divided into small interfering RNA of SGK2 (siSGK2) group and siSGK2+CCF group; additionally, blank group and LPS group were established; each group was treated with the corresponding agents accordingly. The cell survival rate, expression levels of WNK signaling pathway- and decidualization-related proteins and mRNAs, as well as mitochondrial membrane potential levels, were assessed in each group before and after SGK2 knockdown. RSA mice model was constructed and randomly divided into model group, CCF low-dose group, CCF high-dose group, GSK group, and combined dosing group, with 4 mice in each group. Other 4 normal pregnant female mice were selected as the control group. The number of implanted embryos, viable fetuses, and lost embryos in mice was recorded. The morphological changes of endometrium and decidualization were observed, and WNK signaling pathway- and decidualization-related proteins and mRNAs expressing levels as well as mitochondrial membrane potential levels were all detected. RESULTS Compared with the blank group, the cell survival rate, as well as the protein and mRNA expression levels of SGK2, WNK1, WNK4, prolactin, insulin-like growth factor- binding protein-1, oxidative stress responsive kinase 1, and Ste20-like proline-/alanine-rich kinase were significantly reduced in the LPS group (P<0.05); compared with the LPS group, the cell survival rate and the expression levels of the above- mentioned proteins and mRNAs were significantly increased in the CCF group, while the cell survival rate and the expression levels of the above-mentioned proteins and mRNAs were significantly decreased in the GSK group (P<0.05); compared with the CCF group, the cell survival rate and the expression levels of the above-mentioned proteins and mRNAs were significantly reduced in the CCF+GSK group (P<0.05). After knocking down SGK2, compared with the LPS group, the cell survival rate, red/green fluorescence intensity ratio, and the expression levels of the above-mentioned proteins and mRNAs were significantly reduced in the siSGK2 group (P<0.05); compared with the siSGK2 group, the cell survival rate, red/green fluorescence intensity ratio, and the expression levels of the above-mentioned proteins and mRNAs were significantly increased in the siSGK2+CCF group (P<0.05). The in vivo experimental results showed that CCF treatment can significantly improve the number of implanted embryos and viable fetuses in RSA model mice and reduce lost embryos, the expression levels of the above-mentioned proteins and mRNAs in endometrial tissue were significantly increased, and the red/green fluorescence intensity ratio was significantly increased (P< 0.05); the combined dosing group could reverse the effect of CCF (P<0.05). CONCLUSIONS CCF can activate SGK2, up- regulate the WNK signaling pathway, promote endometrial decidualization, and improve RSA.
5.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
6.Study of the mechanism of combretastatin a-4 derivative LGD5 in-duced G2/M cycle arrest and apoptosis in human cervical cancer HeLa cells
Lili PANG ; Ying HU ; Jie LUO ; Qin TU ; Min CHEN
Chinese Journal of Clinical Pharmacology and Therapeutics 2024;29(10):1100-1109
AIM:To explore the mechanism of ac-tion of the microtubular inhibitor of CA-4 deriva-tive LGD5 on human cervical cancer HeLa cells.METHODS:HeLa cells were selected and divided in-to blank group,CA-4 positive control group,and dif-ferent concentrations of LGD5 were formed into the experimental group.MTT was used to investi-gate the growth inhibition of LGD5 on HeLa cells and to determine the assay concentration.Cell morphology and apoptosis were observed before and after drug administration by inverted micro-scope and acridine orange staining.Immunofluo-rescence staining was used to examine the effect of LGD5 on microtubules using DAPI.The effect of LGD5 on cell cycle by PI flow cytometry.Protein im-munoblotting was used to examine the effect of LGD5 on cyclins and apoptosis-related proteins.RE-SULTS:MTT experiments showed that LGD5 inhibit-ed HeLa cells in a time-and dose-dependent man-ner.Timed photography and acridine orange stain-ing observed that LGD5 induced apoptosis in HeLa cells and produced significant chromatin agglutina-tion and apoptotic bodies.Inhibition of microtu-bule polymerization in HeLa cells by LGD5 was ob-served by DAPI staining.The PI flow cytometry re-sults showed that LGD5 induced G2/M cycle arrest in HeLa cells,was time-dependent and dose-depen-dent within 12 h,and had a significant difference(P<0.01),apoptosis was induced after 24 h and it was time-dependent.The results of Western blot show that,LGD5 downregulates Cdc 2 and Cdc25C,up-regulation of p-Cdc 2,and Cyclin B1 and p-histone H3,further verified that LGD5 induced G2/M cycle arrest in HeLa cells,besides,LGD5 caused in-creased Caspase 3 expression in HeLa cells,upregu-lated Caspase 9 and Bax,down-regulation of Pro-caspase 9 and Bcl-2,this result indicates that HeLa cell apoptosis induced by LGD5 is related to the mi-tochondrial pathway.CONCLUSION:The CA-4 deriv-ative LGD5 inhibited microtubule polymerization in HeLa cells,induced their G2/M cycle arrest,and subsequently induced cell apoptosis through the mitochondrial pathway.
7.Current status of home enteral nutrition implementation in pediatric patients
Lili LIN ; Yinxue ZHANG ; Ying GU ; Zhuowen YU ; Yiwen ZHOU ; Yurong ZHANG
Chinese Journal of Modern Nursing 2024;30(22):2966-2970
Objective:To describe the implementation status of home enteral nutrition (HEN) in pediatric patients, providing reference for the management of HEN in pediatric patients.Methods:This study was a cross-sectional study. From March 2020 to May 2021, convenience sampling was used to select 161 pediatric patients who were discharged from the Children's Hospital of Fudan University and underwent HEN as participants. The survey questionnaire was designed to collect clinical data based on the research purpose.Results:Among the 161 pediatric patients who underwent HEN, congenital malformations, digestive system diseases, neurological diseases, malignant tumors, and respiratory system diseases accounted for 38.5% (62/161), 21.7% (35/161), 19.3% (31/161), 11.2% (18/161), and 9.3% (15/161), respectively. A total of 120 pediatric patients were followed up and recorded with nutritional supplements, 49 pediatric patients received whole protein nutritional supplements, 19 received amino acid nutritional supplements, 16 received whole protein nutritional supplements with homemade homogenization, 15 received short peptide nutritional supplements, seven received breast milk with whole protein nutritional supplements, five received homemade homogenization, five received animal milk, two received breast milk, and two received amino acid nutritional supplements with homemade homogenization. A total of 118 pediatric patients were followed up with tube feeding, including 107 cases using intermittent feeding, nine cases using continuous feeding, and two cases using intermittent combined continuous feeding. There were 46 children with tube slippage, nine cases of vomiting, six cases of tube blockage, three cases of abdominal pain and bloating, two cases of diarrhea, one case of nasal redness, one case of aspiration pneumonia, and one case of exudation around the stoma. After a short-term HEN, 74 cases continued to receive tube feeding, 49 cases were successfully removed from the tube and switched to oral feeding, three cases were switched to tube and oral combined feeding, five cases died due to severe illness.Conclusions:Pediatric patients undergoing HEN have a wide range of diseases and a high incidence of tube slippage. Education should be provided to family caregivers to enhance their ability to identify and handle complications, as well as to make correct choices in feeding formulations and methods. We should also establish a sound follow-up system, closely monitor the nutritional status of pediatric patients, and actively assist in preventing complications.
8.Perioperative nursing of a patient with massive renal cell carcinoma and Mayo stageⅢ tumor thrombus undergoing robot-assisted nephrectomy
Yuntao MAO ; Lili CHEN ; Xiaoxiao CHEN ; Ying WANG
Chinese Journal of Nursing 2024;59(8):930-933
This research provides an overview of the perioperative nursing care for a patient with a massive renal cell carcinoma and Mayo Stage Ⅲ tumor thrombus who underwent a robot-assisted nephrectomy complicated by sig-nificant intraoperative bleeding and CO2 embolism.Key nursing considerations included multidisciplinary preoperative discussions,developing stepwise intraoperative emergency plans,establishing an integrated nursing workstation,and the optimization of patient monitoring.During the surgery,nursing efforts were focused on supporting the robot-as-sisted procedure,closely monitoring the patient's condition,preventing intraoperative complications,initiating emergency plans as needed,actively managing major bleeding and CO2 embolism,and implementing structured positioning to minimize the risk of falls during the procedure.Postoperatively,the focus was on preventing secondary thrombus formation,managing active bleeding,and monitoring for liver and kidney ischemia-reperfusion injury.Through multi-disciplinary interventions and meticulous nursing care,the patient was discharged after a 13-day postoperative recovery.
9.Perioperative nursing care of 2 children with dilated cardiomyopathy undergoing orthotopic heart transplantation
Yan CHEN ; Ying GU ; Yulu XU ; Lan YE ; Huimei WANG ; Lili FU ; Yaping MI ; Ming YE ; Fang LIU
Chinese Journal of Nursing 2024;59(21):2653-2658
This study summarized the nursing experience of 2 pediatric heart transplant surgeries.Perioperative care included preoperative maintenance of cardiac function,volume management,infection prevention measures,and psychological preparation.Early postoperative care involved circulatory monitoring,management of right heart dysfunction,use of immunosuppressants,observation of rejection reactions,control of postoperative infections,nutritional support,psychological care,and home continuity care.The postoperative rehabilitation effect of the children is satisfactory after multi-team special treatment and nursing care.The postoperative hospitalization time for the 2 patients were 20 and 30 days.After discharge,2 patients showed good recovery during follow-up.
10.Identification of differentially expressed proteins in hippocampal injury induced by liver ischemia-reperfusion in rats
Wenhui HAN ; Lili JIA ; Yutang FU ; Junpeng LIU ; Ying SUN ; Mingwei SHENG ; Dan LYU ; Tao ZHANG ; Wenli YU
Chinese Journal of Anesthesiology 2024;44(11):1369-1374
Objective:To identify the differentially expressed proteins that caused hippocampal damage after liver ischemia-reperfusion (I/R) in rats.Methods:Eighteen clean-grade healthy juvenile male Sprague-Dawley rats, aged 2 weeks, weighing 20-30 g, were divided into 2 groups ( n=9 each) using a random number table method: sham operation group (S group) and liver I/R group (IR group). A rat model of liver I/R injury was prepared by restoring perfusion after 1 h of liver ischemia. The rats were sacrificed after being anesthetized at day 3 of reperfusion, and the hippocampal tissue was isolated and analyzed to obtain gene expression profiles. Differentially expressed genes were identified using the R software, and further protein interaction networks were constructed through Cytoscape and Kyoto Encyclopedia Genes and Genomes pathway analysis to determine the differentially expressed proteins. Quantitative real-time polymerase chain reaction and Western blot were used for validation. Results:A total of 45 differentially expressed proteins were identified by the proteomic analysis of hippocampal tissues, including 36 significantly up-regulated proteins and 9 significantly down-regulated proteins. The proteins with significant expression related to injury were identified from the PPI network complex using the CytoHubBA plug-in cystscape: Ras-related C3 botulinum toxin substrate (RAC2), HRAS, phosphatidylinositol-3-kinase inhibitor phosphatase and tensin homologue (PTEN), and N-methyl-D-aspartate ionotropic glutamate receptor 2b (GRIN2b). The results of quantitative real-time polymerase chain reaction and Western blot showed that the expression of RAC2, HRAS, PTEN, and GRIN2b in the hippocampal tissue was significantly up-regulated in IR group compared with S group ( P<0.05). The results of Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that differentially expressed proteins were significantly enriched in the expression of PD-L1 and its checkpoint pathway, long-term potentiation, and regulation of the Wnt signaling pathway in cancer. Conclusions:The mechanism by which liver I/R induces hippocampal injury may be related to the up-regulation of the expression of RAC2, HRAS, PTEN and GRIN2b in rats.


Result Analysis
Print
Save
E-mail