1.Dissecting Causal Relationships Between Gut Microbiota, 1400 Blood Metabolites, and Intervertebral Disc Degeneration
Yuxi LIU ; Daxiong FENG ; Hong ZHANG ; Likun WANG
Neurospine 2025;22(1):211-221
Objective:
The precise mechanisms driving intervertebral disc degeneration (IVDD) development remain unclear, but evidence suggests a significant involvement of gut microbiota (GM) and blood metabolites. We aimed to investigate the causal relationships between GM, IVDD, and blood metabolites using Mendelian randomization (MR) analysis.
Methods:
We utilized the summary statistics of GM from the MiBioGen consortium, 1400 blood metabolites from the genome-wide association studies (GWAS) Catalog, and IVDD data from the FinnGen repository, which are sourced from the largest GWAS conducted to date. Employing bidirectional MR analyses, we investigated the causal relationships between GM and IVDD. Additionally, we conducted 2 mediation analyses, 2-step MR and multivariable MR (MVMR), to identify potential mediating metabolites.
Results:
Five bacterial genera were causally associated with IVDD, while IVDD did not show a significant causal effect on GM. In the 2-step MR analysis, Eubacteriumfissicatenagroup, RuminococcaceaeUCG003, Lachnoclostridium, and Marvinbryantia genera, along with metabolites X-24949, Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), X-24456, histidine, 2-methylserine, Phosphocholine, and N-delta-acetylornithine, were all significantly associated with IVDD (all p < 0.05). MVMR analysis revealed that the associations between Eubacteriumfissicatenagroup genus and IVDD were mediated by X-24949 (8.1%, p = 0.024); Lachnoclostridium genus and IVDD were mediated by histidine (18.1%, p = 0.013); and RuminococcaceaeUCG003 genus and IVDD were mediated by C7-DC (-7.5%, p = 0.041).
Conclusion
The present MR study offers evidence supporting the causal relationships between several specific GM taxa and IVDD, as well as identifying potential mediating metabolites.
2.Dissecting Causal Relationships Between Gut Microbiota, 1400 Blood Metabolites, and Intervertebral Disc Degeneration
Yuxi LIU ; Daxiong FENG ; Hong ZHANG ; Likun WANG
Neurospine 2025;22(1):211-221
Objective:
The precise mechanisms driving intervertebral disc degeneration (IVDD) development remain unclear, but evidence suggests a significant involvement of gut microbiota (GM) and blood metabolites. We aimed to investigate the causal relationships between GM, IVDD, and blood metabolites using Mendelian randomization (MR) analysis.
Methods:
We utilized the summary statistics of GM from the MiBioGen consortium, 1400 blood metabolites from the genome-wide association studies (GWAS) Catalog, and IVDD data from the FinnGen repository, which are sourced from the largest GWAS conducted to date. Employing bidirectional MR analyses, we investigated the causal relationships between GM and IVDD. Additionally, we conducted 2 mediation analyses, 2-step MR and multivariable MR (MVMR), to identify potential mediating metabolites.
Results:
Five bacterial genera were causally associated with IVDD, while IVDD did not show a significant causal effect on GM. In the 2-step MR analysis, Eubacteriumfissicatenagroup, RuminococcaceaeUCG003, Lachnoclostridium, and Marvinbryantia genera, along with metabolites X-24949, Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), X-24456, histidine, 2-methylserine, Phosphocholine, and N-delta-acetylornithine, were all significantly associated with IVDD (all p < 0.05). MVMR analysis revealed that the associations between Eubacteriumfissicatenagroup genus and IVDD were mediated by X-24949 (8.1%, p = 0.024); Lachnoclostridium genus and IVDD were mediated by histidine (18.1%, p = 0.013); and RuminococcaceaeUCG003 genus and IVDD were mediated by C7-DC (-7.5%, p = 0.041).
Conclusion
The present MR study offers evidence supporting the causal relationships between several specific GM taxa and IVDD, as well as identifying potential mediating metabolites.
3.Dissecting Causal Relationships Between Gut Microbiota, 1400 Blood Metabolites, and Intervertebral Disc Degeneration
Yuxi LIU ; Daxiong FENG ; Hong ZHANG ; Likun WANG
Neurospine 2025;22(1):211-221
Objective:
The precise mechanisms driving intervertebral disc degeneration (IVDD) development remain unclear, but evidence suggests a significant involvement of gut microbiota (GM) and blood metabolites. We aimed to investigate the causal relationships between GM, IVDD, and blood metabolites using Mendelian randomization (MR) analysis.
Methods:
We utilized the summary statistics of GM from the MiBioGen consortium, 1400 blood metabolites from the genome-wide association studies (GWAS) Catalog, and IVDD data from the FinnGen repository, which are sourced from the largest GWAS conducted to date. Employing bidirectional MR analyses, we investigated the causal relationships between GM and IVDD. Additionally, we conducted 2 mediation analyses, 2-step MR and multivariable MR (MVMR), to identify potential mediating metabolites.
Results:
Five bacterial genera were causally associated with IVDD, while IVDD did not show a significant causal effect on GM. In the 2-step MR analysis, Eubacteriumfissicatenagroup, RuminococcaceaeUCG003, Lachnoclostridium, and Marvinbryantia genera, along with metabolites X-24949, Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), X-24456, histidine, 2-methylserine, Phosphocholine, and N-delta-acetylornithine, were all significantly associated with IVDD (all p < 0.05). MVMR analysis revealed that the associations between Eubacteriumfissicatenagroup genus and IVDD were mediated by X-24949 (8.1%, p = 0.024); Lachnoclostridium genus and IVDD were mediated by histidine (18.1%, p = 0.013); and RuminococcaceaeUCG003 genus and IVDD were mediated by C7-DC (-7.5%, p = 0.041).
Conclusion
The present MR study offers evidence supporting the causal relationships between several specific GM taxa and IVDD, as well as identifying potential mediating metabolites.
4.Dissecting Causal Relationships Between Gut Microbiota, 1400 Blood Metabolites, and Intervertebral Disc Degeneration
Yuxi LIU ; Daxiong FENG ; Hong ZHANG ; Likun WANG
Neurospine 2025;22(1):211-221
Objective:
The precise mechanisms driving intervertebral disc degeneration (IVDD) development remain unclear, but evidence suggests a significant involvement of gut microbiota (GM) and blood metabolites. We aimed to investigate the causal relationships between GM, IVDD, and blood metabolites using Mendelian randomization (MR) analysis.
Methods:
We utilized the summary statistics of GM from the MiBioGen consortium, 1400 blood metabolites from the genome-wide association studies (GWAS) Catalog, and IVDD data from the FinnGen repository, which are sourced from the largest GWAS conducted to date. Employing bidirectional MR analyses, we investigated the causal relationships between GM and IVDD. Additionally, we conducted 2 mediation analyses, 2-step MR and multivariable MR (MVMR), to identify potential mediating metabolites.
Results:
Five bacterial genera were causally associated with IVDD, while IVDD did not show a significant causal effect on GM. In the 2-step MR analysis, Eubacteriumfissicatenagroup, RuminococcaceaeUCG003, Lachnoclostridium, and Marvinbryantia genera, along with metabolites X-24949, Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), X-24456, histidine, 2-methylserine, Phosphocholine, and N-delta-acetylornithine, were all significantly associated with IVDD (all p < 0.05). MVMR analysis revealed that the associations between Eubacteriumfissicatenagroup genus and IVDD were mediated by X-24949 (8.1%, p = 0.024); Lachnoclostridium genus and IVDD were mediated by histidine (18.1%, p = 0.013); and RuminococcaceaeUCG003 genus and IVDD were mediated by C7-DC (-7.5%, p = 0.041).
Conclusion
The present MR study offers evidence supporting the causal relationships between several specific GM taxa and IVDD, as well as identifying potential mediating metabolites.
5.Dissecting Causal Relationships Between Gut Microbiota, 1400 Blood Metabolites, and Intervertebral Disc Degeneration
Yuxi LIU ; Daxiong FENG ; Hong ZHANG ; Likun WANG
Neurospine 2025;22(1):211-221
Objective:
The precise mechanisms driving intervertebral disc degeneration (IVDD) development remain unclear, but evidence suggests a significant involvement of gut microbiota (GM) and blood metabolites. We aimed to investigate the causal relationships between GM, IVDD, and blood metabolites using Mendelian randomization (MR) analysis.
Methods:
We utilized the summary statistics of GM from the MiBioGen consortium, 1400 blood metabolites from the genome-wide association studies (GWAS) Catalog, and IVDD data from the FinnGen repository, which are sourced from the largest GWAS conducted to date. Employing bidirectional MR analyses, we investigated the causal relationships between GM and IVDD. Additionally, we conducted 2 mediation analyses, 2-step MR and multivariable MR (MVMR), to identify potential mediating metabolites.
Results:
Five bacterial genera were causally associated with IVDD, while IVDD did not show a significant causal effect on GM. In the 2-step MR analysis, Eubacteriumfissicatenagroup, RuminococcaceaeUCG003, Lachnoclostridium, and Marvinbryantia genera, along with metabolites X-24949, Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), X-24456, histidine, 2-methylserine, Phosphocholine, and N-delta-acetylornithine, were all significantly associated with IVDD (all p < 0.05). MVMR analysis revealed that the associations between Eubacteriumfissicatenagroup genus and IVDD were mediated by X-24949 (8.1%, p = 0.024); Lachnoclostridium genus and IVDD were mediated by histidine (18.1%, p = 0.013); and RuminococcaceaeUCG003 genus and IVDD were mediated by C7-DC (-7.5%, p = 0.041).
Conclusion
The present MR study offers evidence supporting the causal relationships between several specific GM taxa and IVDD, as well as identifying potential mediating metabolites.
6.Epidemiological characteristics of pertussis in Harbin City from 2015 to 2024
ZHANG Junjie ; LUO Chao ; JIANG Likun ; ZHANG Huiying
Journal of Preventive Medicine 2025;37(9):941-944
Objective:
To investigate the epidemiological characteristics of pertussis in Harbin City from 2015 to 2024, so as to provide the basis for formulating pertussis prevention and control measures.
Methods:
The incidence data of pertussis in Harbin City from 2015 to 2024 were collected through the Infectious Disease Reporting Information System of Chinese Disease Prevention and Control Information System, and the vaccination data were collected through the Immunization Program Information System of Heilongjiang Province. Descriptive epidemiological methods were used to analyze the temporal, regional and population distribution characteristics of pertussis incidence as well as the immunization history of pertussis cases.
Results:
A total of 417 cases of pertussis were reported in Harbin City from 2015 to 2024, with an average annual reported incidence of 0.41/100 000. The reported incidence increased from 0.18/100 000 in 2015 to 0.64/100 000 in 2024, showing an overall upward trend (P<0.05). The peak incidence period was from August to November, with 253 cases, accounting for 60.67%. The average annual reported incidences of pertussis in Shuangcheng District, Nangang District and Daoli District were relatively high, at 1.09/100 000, 0.93/100 000 and 0.52/100 000, respectively. There were 223 male cases and 194 female cases, with a male-to-female ratio of 1.15∶1. The average annual reported incidence of pertussis was 0.45/100 000 in males and 0.39/100 000 in females, with no statistically significant difference (P>0.05). Cases were predominantly distributed among children under 6 months and those aged 6 to under 10 years, with 176 and 144 cases, accounting for 42.21% and 34.53% respectively. The majority of cases were scattered children, with 266 cases (63.79%). There were 175 cases (41.97%) without diphtheria-tetanus-pertussis (DTP) vaccine and 172 cases (41.25%) who had completed the full course of immunization.
Conclusions
The incidence of pertussis in Harbin City showed an upward trend from 2015 to 2024. Autumn was identified as the peak season for disease onset. Shuangcheng District and Nangang District were the high-incidence areas. Children under 6 months, those aged 6 to under 10 years, scattered children, and those who had not received the DTP vaccine were the high-risk groups. It is recommended to improve pertussis surveillance strategies and strengthen childhood immunization programs.
7.IMM-H007 promotes hepatic cholesterol and triglyceride metabolism by activating AMPKα to attenuate hypercholesterolemia.
Jiaqi LI ; Mingchao WANG ; Kai QU ; Yuyao SUN ; Zequn YIN ; Na DONG ; Xin SUN ; Yitong XU ; Liang CHEN ; Shuang ZHANG ; Xunde XIAN ; Suowen XU ; Likun MA ; Yajun DUAN ; Haibo ZHU
Acta Pharmaceutica Sinica B 2025;15(8):4047-4063
Hypercholesterolemia is a significant risk factor for the development of atherosclerosis. 2',3',5'-Tri-O-acetyl-N 6-(3-hydroxyphenyl) adenosine (IMM-H007), a novel AMPK agonist, has shown protective effects in metabolic diseases. However, its impact on cholesterol and triglyceride metabolism in hypercholesterolemia remains unclear. In this study, we aimed to elucidate the effects and specific mechanisms by which IMM-H007 regulates cholesterol and triglyceride metabolism. To achieve this goal, we used Apoe -/- and Ldlr -/- mice to establish a hypercholesterolemia/atherosclerosis model. Additionally, hepatocyte-specific Ampka1/2 knockout mice were subjected to a 5-week high-cholesterol diet to establish hypercholesterolemia, while atherosclerosis was induced via AAV-PCSK9 injection combined with a 16-week high-cholesterol diet. Our results demonstrated that IMM-H007 improved cholesterol and triglyceride metabolism in mice with hypercholesterolemia. Mechanistically, IMM-H007 modulated the AMPKα1/2-LDLR signaling pathway, increasing cholesterol uptake in the liver. Furthermore, IMM-H007 activated the AMPKα1-FXR pathway, promoting the conversion of hepatic cholesterol to bile acids. Additionally, IMM-H007 prevented hepatic steatosis by activating the AMPKα1/2-ATGL pathway. In conclusion, our study suggests that IMM-H007 is a promising therapeutic agent for improving hypercholesterolemia and atherosclerosis through the activation of AMPKα.
8.Interpretation of the 5th edition WHO classification of adrenal cortical tumors
Chinese Journal of Pathology 2024;53(1):16-21
Non-neoplastic lesions were added in the 5th edition WHO classification of adrenal cortical tumor based on the recent update, including adrenal rests, adrenal cysts, congenital adrenal hyperplasia and adrenocortical nodular disease. A range of tumor concepts were updated or refined based on tumor cell origin, histopathology, oncology and molecular biology. The most significant nomenclature change in the field of adrenal cortical pathology involves the refined classification of adrenal cortical nodular disease, which now includes sporadic nodular adrenocortical disease, bilateral micronodular adrenal cortical disease, and bilateral macronodular adrenal cortical disease. The 5th edition WHO classification endorses the nomenclature of the HISTALDO classification to help the classification of aldosterone producing adrenal cortical lesions, which uses CYP11B2 immunohistochemistry to identify functional sites of aldosterone production. The 5th edition WHO classification does not change the Weiss and Lin-Weiss-Bisceglia histopathologic criteria for diagnosing adrenal cortical carcinomas, and underscores the diagnostic and prognostic impact of angioinvasion in these tumors. Reticulin algorithm and Helsinki scoring system were added to assist the differential diagnosis of adrenal cortical neoplasms in adults. Pediatric adrenal cortical neoplasms are assessed using the Wieneke system. The 5th edition WHO classification places an emphasis on an accurate assessment of tumor proliferation rate using both the mitotic count (mitoses per 10 mm 2) and Ki-67 labeling index which play an essential role in the dynamic risk stratification of affected patients. This review highlights advances in knowledge of histological features, ancillary studies, and associated genetic findings that increase the understanding of the adrenal cortex pathologies in the 5th edition WHO classification.
9.4 cases of occupational lung cancer caused by chloromethyl ether and dichloromethyl ether in a chemical enterprise
Likun SONG ; Jiechao WANG ; Qiuju TIAN ; Pan ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2024;42(10):772-775
Chloromethyl ether and diclomethyl ether are statutory substances that cause occupational lung cancer. From 2021 to 2022, the Department of Occupational Diseases of the Eighth People's Hospital of Hebei Province successively received 4 cases of lung cancer from a chemical company that required occupational disease diagnosis. All four patients had a clear occupational history of chloromethyl ether and diclomethyl ether for more than 1 year, diagnosis of primary small cell lung cancer supported by relevant histopathology, immunohistochemistry, and tumor markers. All the 4 patients were diagnosed as occupational lung cancer (chloromethyl ether, diclomethyl ether) .
10.4 cases of occupational lung cancer caused by chloromethyl ether and dichloromethyl ether in a chemical enterprise
Likun SONG ; Jiechao WANG ; Qiuju TIAN ; Pan ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2024;42(10):772-775
Chloromethyl ether and diclomethyl ether are statutory substances that cause occupational lung cancer. From 2021 to 2022, the Department of Occupational Diseases of the Eighth People's Hospital of Hebei Province successively received 4 cases of lung cancer from a chemical company that required occupational disease diagnosis. All four patients had a clear occupational history of chloromethyl ether and diclomethyl ether for more than 1 year, diagnosis of primary small cell lung cancer supported by relevant histopathology, immunohistochemistry, and tumor markers. All the 4 patients were diagnosed as occupational lung cancer (chloromethyl ether, diclomethyl ether) .


Result Analysis
Print
Save
E-mail