1.Two types of coumarins-specific enzymes complete the last missing steps in pyran- and furanocoumarins biosynthesis.
Yucheng ZHAO ; Yuedong HE ; Liangliang HAN ; Libo ZHANG ; Yuanzheng XIA ; Fucheng YIN ; Xiaobing WANG ; Deqing ZHAO ; Sheng XU ; Fei QIAO ; Yibei XIAO ; Lingyi KONG
Acta Pharmaceutica Sinica B 2024;14(2):869-880
Pyran- and furanocoumarins are key representatives of tetrahydropyrans and tetrahydrofurans, respectively, exhibiting diverse physiological and medical bioactivities. However, the biosynthetic mechanisms for their core structures remain poorly understood. Here we combined multiomics analyses of biosynthetic enzymes in Peucedanum praeruptorum and in vitro functional verification and identified two types of key enzymes critical for pyran and furan ring biosynthesis in plants. These included three distinct P. praeruptorum prenyltransferases (PpPT1-3) responsible for the prenylation of the simple coumarin skeleton 7 into linear or angular precursors, and two novel CYP450 cyclases (PpDC and PpOC) crucial for the cyclization of the linear/angular precursors into either tetrahydropyran or tetrahydrofuran scaffolds. Biochemical analyses of cyclases indicated that acid/base-assisted epoxide ring opening contributed to the enzyme-catalyzed tetrahydropyran and tetrahydrofuran ring refactoring. The possible acid/base-assisted catalytic mechanisms of the identified cyclases were theoretically investigated and assessed using site-specific mutagenesis. We identified two possible acidic amino acids Glu303 in PpDC and Asp301 in PpOC as vital in the catalytic process. This study provides new enzymatic tools in the epoxide formation/epoxide-opening mediated cascade reaction and exemplifies how plants become chemically diverse in terms of enzyme function and catalytic process.
2.Application of self-designed collateral circulation quantitative score based on multi-task learning vascular segmentation in sCTA assessment of collateral circulation in acute ischemic stroke
Yunqiu YANG ; Qingmao HU ; Zhen WANG ; Jinping XU ; Libo LIU ; Nan YANG ; Xingchen LIU ; Guorui MA ; Chen YANG
Journal of Xi'an Jiaotong University(Medical Sciences) 2024;45(3):497-507
Objective To evaluate the clinical use of the baseline CT angiography(CTA)quantitative score(self-designed collateral circulation quantitative,SD-CCQ)in determining the collateral circulation compensation status in patients with acute ischemic stroke(AIS),as well as the reliability and accuracy of the SD-CCQ score and the Alberta Stroke Program Early CT Score(ASPECTS).Methods Retrospective analysis was made on the clinical and imaging data,including CT,CTA and DWI image data,of 84 patients who were admitted for acute ischemic stroke to the Department of Neurorehabilitation of Zhongshan Hospital of Traditional Chinese Medicine from January 2020 to December 2022.Their CTA source images were annotated using a multi-task deep learning method for vascular segmentation.The ASPECTS score and SD-CCQ score were then applied to the CTA images following vascular segmentation in order to assess the collateral circulation compensation of AIS patients.The Kappa test was used to assess the consistency of the two methods used to assess collateral circulation,and the multifactorial Logistic regression analysis was used to examine the relationship between the SD-CCQ and the prognosis of the AIS patients.Results ASPECTS score had good consistency with SD-CCQ score in evaluating collateral circulation in AIS patients(κ=0.65,P<0.001),and the diagnostic accuracy of the latter for benign collateral circulation in AIS was 96.15%.Logistic regression analysis showed that the new collateral circulation score,baseline NIHSS,and DWI infarct volume were the main factors affecting the long-term prognosis of AIS patients.Conclusion The new scoring system SD-CCQ can be used to evaluate the compensatory status of collateral circulation in AIS patients,which may help in clinical treatment decision-making and prognosis prediction.
3.Research progress of phage therapy in orthopedic implant-related infection
Zulipikaer MAIMAITI ; Zhuo LI ; Chi XU ; Jun FU ; Libo HAO ; Liang LIU ; Jiying CHEN ; Wei CHAI
Chinese Journal of Surgery 2024;62(1):81-85
The widespread application of implantable materials has brought about a corresponding increase in implant-related complications, with implant-associated infections being the most critical. Biofilms, which often form on these implants, can significantly impede the effectiveness of traditional antibiotic therapies. Therefore, strategies such as surgical removal of infected implants and prolonged antibiotic treatment have been acknowledged as effective measures to eradicate these infections. However,the challenges of antibiotic resistance and biofilm persistence often result in recurrent or hard-to-control infections, posing severe health threats to patients. Recent studies suggest that phages, a type of virus, can directly eliminate pathogenic bacteria and degrade biofilms. Furthermore, clinical trials have demonstrated promising therapeutic results with the combined use of phages and antibiotics. Consequently, this innovative therapy holds significant potential as an effective solution for managing implant-associated infections. This paper rigorously investigates and evaluates the potential value of phage therapy in addressing orthopedic implant-associated infections, based on a comprehensive review of relevant scientific literature.
4.Research progress of phage therapy in orthopedic implant-related infection
Zulipikaer MAIMAITI ; Zhuo LI ; Chi XU ; Jun FU ; Libo HAO ; Liang LIU ; Jiying CHEN ; Wei CHAI
Chinese Journal of Surgery 2024;62(1):81-85
The widespread application of implantable materials has brought about a corresponding increase in implant-related complications, with implant-associated infections being the most critical. Biofilms, which often form on these implants, can significantly impede the effectiveness of traditional antibiotic therapies. Therefore, strategies such as surgical removal of infected implants and prolonged antibiotic treatment have been acknowledged as effective measures to eradicate these infections. However,the challenges of antibiotic resistance and biofilm persistence often result in recurrent or hard-to-control infections, posing severe health threats to patients. Recent studies suggest that phages, a type of virus, can directly eliminate pathogenic bacteria and degrade biofilms. Furthermore, clinical trials have demonstrated promising therapeutic results with the combined use of phages and antibiotics. Consequently, this innovative therapy holds significant potential as an effective solution for managing implant-associated infections. This paper rigorously investigates and evaluates the potential value of phage therapy in addressing orthopedic implant-associated infections, based on a comprehensive review of relevant scientific literature.
5.Research progress of phage therapy in orthopedic implant-related infection
Zulipikaer MAIMAITI ; Zhuo LI ; Chi XU ; Jun FU ; Libo HAO ; Liang LIU ; Jiying CHEN ; Wei CHAI
Chinese Journal of Surgery 2024;62(1):81-85
The widespread application of implantable materials has brought about a corresponding increase in implant-related complications, with implant-associated infections being the most critical. Biofilms, which often form on these implants, can significantly impede the effectiveness of traditional antibiotic therapies. Therefore, strategies such as surgical removal of infected implants and prolonged antibiotic treatment have been acknowledged as effective measures to eradicate these infections. However,the challenges of antibiotic resistance and biofilm persistence often result in recurrent or hard-to-control infections, posing severe health threats to patients. Recent studies suggest that phages, a type of virus, can directly eliminate pathogenic bacteria and degrade biofilms. Furthermore, clinical trials have demonstrated promising therapeutic results with the combined use of phages and antibiotics. Consequently, this innovative therapy holds significant potential as an effective solution for managing implant-associated infections. This paper rigorously investigates and evaluates the potential value of phage therapy in addressing orthopedic implant-associated infections, based on a comprehensive review of relevant scientific literature.
6.Research progress of phage therapy in orthopedic implant-related infection
Zulipikaer MAIMAITI ; Zhuo LI ; Chi XU ; Jun FU ; Libo HAO ; Liang LIU ; Jiying CHEN ; Wei CHAI
Chinese Journal of Surgery 2024;62(1):81-85
The widespread application of implantable materials has brought about a corresponding increase in implant-related complications, with implant-associated infections being the most critical. Biofilms, which often form on these implants, can significantly impede the effectiveness of traditional antibiotic therapies. Therefore, strategies such as surgical removal of infected implants and prolonged antibiotic treatment have been acknowledged as effective measures to eradicate these infections. However,the challenges of antibiotic resistance and biofilm persistence often result in recurrent or hard-to-control infections, posing severe health threats to patients. Recent studies suggest that phages, a type of virus, can directly eliminate pathogenic bacteria and degrade biofilms. Furthermore, clinical trials have demonstrated promising therapeutic results with the combined use of phages and antibiotics. Consequently, this innovative therapy holds significant potential as an effective solution for managing implant-associated infections. This paper rigorously investigates and evaluates the potential value of phage therapy in addressing orthopedic implant-associated infections, based on a comprehensive review of relevant scientific literature.
7.Research progress of phage therapy in orthopedic implant-related infection
Zulipikaer MAIMAITI ; Zhuo LI ; Chi XU ; Jun FU ; Libo HAO ; Liang LIU ; Jiying CHEN ; Wei CHAI
Chinese Journal of Surgery 2024;62(1):81-85
The widespread application of implantable materials has brought about a corresponding increase in implant-related complications, with implant-associated infections being the most critical. Biofilms, which often form on these implants, can significantly impede the effectiveness of traditional antibiotic therapies. Therefore, strategies such as surgical removal of infected implants and prolonged antibiotic treatment have been acknowledged as effective measures to eradicate these infections. However,the challenges of antibiotic resistance and biofilm persistence often result in recurrent or hard-to-control infections, posing severe health threats to patients. Recent studies suggest that phages, a type of virus, can directly eliminate pathogenic bacteria and degrade biofilms. Furthermore, clinical trials have demonstrated promising therapeutic results with the combined use of phages and antibiotics. Consequently, this innovative therapy holds significant potential as an effective solution for managing implant-associated infections. This paper rigorously investigates and evaluates the potential value of phage therapy in addressing orthopedic implant-associated infections, based on a comprehensive review of relevant scientific literature.
8.Research progress of phage therapy in orthopedic implant-related infection
Zulipikaer MAIMAITI ; Zhuo LI ; Chi XU ; Jun FU ; Libo HAO ; Liang LIU ; Jiying CHEN ; Wei CHAI
Chinese Journal of Surgery 2024;62(1):81-85
The widespread application of implantable materials has brought about a corresponding increase in implant-related complications, with implant-associated infections being the most critical. Biofilms, which often form on these implants, can significantly impede the effectiveness of traditional antibiotic therapies. Therefore, strategies such as surgical removal of infected implants and prolonged antibiotic treatment have been acknowledged as effective measures to eradicate these infections. However,the challenges of antibiotic resistance and biofilm persistence often result in recurrent or hard-to-control infections, posing severe health threats to patients. Recent studies suggest that phages, a type of virus, can directly eliminate pathogenic bacteria and degrade biofilms. Furthermore, clinical trials have demonstrated promising therapeutic results with the combined use of phages and antibiotics. Consequently, this innovative therapy holds significant potential as an effective solution for managing implant-associated infections. This paper rigorously investigates and evaluates the potential value of phage therapy in addressing orthopedic implant-associated infections, based on a comprehensive review of relevant scientific literature.
9.Research progress of phage therapy in orthopedic implant-related infection
Zulipikaer MAIMAITI ; Zhuo LI ; Chi XU ; Jun FU ; Libo HAO ; Liang LIU ; Jiying CHEN ; Wei CHAI
Chinese Journal of Surgery 2024;62(1):81-85
The widespread application of implantable materials has brought about a corresponding increase in implant-related complications, with implant-associated infections being the most critical. Biofilms, which often form on these implants, can significantly impede the effectiveness of traditional antibiotic therapies. Therefore, strategies such as surgical removal of infected implants and prolonged antibiotic treatment have been acknowledged as effective measures to eradicate these infections. However,the challenges of antibiotic resistance and biofilm persistence often result in recurrent or hard-to-control infections, posing severe health threats to patients. Recent studies suggest that phages, a type of virus, can directly eliminate pathogenic bacteria and degrade biofilms. Furthermore, clinical trials have demonstrated promising therapeutic results with the combined use of phages and antibiotics. Consequently, this innovative therapy holds significant potential as an effective solution for managing implant-associated infections. This paper rigorously investigates and evaluates the potential value of phage therapy in addressing orthopedic implant-associated infections, based on a comprehensive review of relevant scientific literature.
10.Research progress of phage therapy in orthopedic implant-related infection
Zulipikaer MAIMAITI ; Zhuo LI ; Chi XU ; Jun FU ; Libo HAO ; Liang LIU ; Jiying CHEN ; Wei CHAI
Chinese Journal of Surgery 2024;62(1):81-85
The widespread application of implantable materials has brought about a corresponding increase in implant-related complications, with implant-associated infections being the most critical. Biofilms, which often form on these implants, can significantly impede the effectiveness of traditional antibiotic therapies. Therefore, strategies such as surgical removal of infected implants and prolonged antibiotic treatment have been acknowledged as effective measures to eradicate these infections. However,the challenges of antibiotic resistance and biofilm persistence often result in recurrent or hard-to-control infections, posing severe health threats to patients. Recent studies suggest that phages, a type of virus, can directly eliminate pathogenic bacteria and degrade biofilms. Furthermore, clinical trials have demonstrated promising therapeutic results with the combined use of phages and antibiotics. Consequently, this innovative therapy holds significant potential as an effective solution for managing implant-associated infections. This paper rigorously investigates and evaluates the potential value of phage therapy in addressing orthopedic implant-associated infections, based on a comprehensive review of relevant scientific literature.

Result Analysis
Print
Save
E-mail