1.Research progress and clinical challenges in immunosuppressive regimens for xenotransplantation
Yu ZHANG ; Kun WANG ; Xuyuan ZHU ; Yuxiang CHEN ; Tao LI ; Xiaojie MA ; Hongtao JIANG
Organ Transplantation 2026;17(1):28-35
As a pivotal strategy to alleviate the shortage of organ donors, xenotransplantation has achieved remarkable advances in both pre-clinical and clinical studies in recent years, driven by continuous optimization of gene modification techniques and immunosuppressive regimens. Nevertheless, clinical translation still confronts formidable challenges, including rejection and heightened infection risks, which severely compromise long-term graft survival. Consequently, the role of immunosuppressive regimens in xenotransplantation has become increasingly prominent. This article summarizes the mechanisms underlying xenogeneic immune rejection, the latest developments in immunosuppressive regimens, cutting-edge strategies for inducing immune tolerance and the major hurdles facing clinical xenotransplantation. It delves into potential optimization strategies and directions for future clinical research, aiming to offer theoretical insights and practical guidance for the safe and effective application of clinical xenotransplantation.
2.Hot issues and application prospects of small molecule drugs in treatment of osteoarthritis
Shuai YU ; Jiawei LIU ; Bin ZHU ; Tan PAN ; Xinglong LI ; Guangfeng SUN ; Haiyang YU ; Ya DING ; Hongliang WANG
Chinese Journal of Tissue Engineering Research 2025;29(9):1913-1922
BACKGROUND:Various proteins,signaling pathways,and inflammatory mediators are involved in the pathophysiological process of osteoarthritis.The development of small molecule drugs targeting these proteins,signaling pathways,and inflammatory mediators can effectively delay the progression of osteoarthritis and ameliorate its clinical manifestations. OBJECTIVE:To review the research progress of small molecule drugs in the treatment of osteoarthritis based on the pathogenesis of osteoarthritis. METHODS:PubMed,CNKI,and WanFang databases were searched with English search terms"osteoarthritis,arthritis,osteoarthrosis,degenerative,arthritides,deformans,small molecule drugs,small molecule inhibitors,small molecule agents"and Chinese search terms"osteoarthritis,small molecule drugs,small molecule inhibitors."A total of 68 articles were included for review according to the inclusion and exclusion criteria. RESULTS AND CONCLUSION:(1)Currently,studies concerning the pathogenesis of osteoarthritis remain unclear.The occurrence and development of osteoarthritis are strongly associated with proteins,cytokines,and signal transduction pathways,so its therapeutic mechanism is relatively complex.Currently,targeting proteins,cytokines,and signal transduction pathways related to osteoarthritis with small molecule drugs has become a major research focus.(2)Small molecule drugs frequently possess visible intracellular or extracellular targets and efficacy,containing enhancing cartilage repair,resisting joint degradation,attenuating inflammation,and relieving pain.Other anti-osteoarthritis small molecule drugs have shown promise in promoting stem cell chondrogenic differentiation and cartilage matrix reconstruction.(3)At present,small molecule drugs targeting the pathophysiological process of osteoarthritis to delay the progression of osteoarthritis are still in the experimental stage,but most of these small molecule drugs have shown the expected results in the experimental process,and there are no relevant studies to illustrate the efficacy of small molecule drugs in the treatment of osteoarthritis.(4)Small molecule drugs for the treatment of osteoarthritis have reached the expected experimental results in the basic experimental stage.Numerous studies have exhibited that small molecule drugs can target the suppression of specific proteins,cytokines,and signal transduction pathways that cause osteoarthritis,so as to treat osteoarthritis.Nevertheless,its safety and effectiveness still need to be identified by further basic and clinical studies.This process needs to be investigated and studied by more scholars.(5)At present,many scholars in and outside China have made contributions to the treatment of osteoarthritis.Compared with traditional treatment methods,small molecule drugs reveal better efficacy and safety in the basic experimental stage,and it is expected to become an emerging method for the treatment of osteoarthritis in the future to rid patients of pain.
3.Prevalence and influencing factors of school bullying experienced by primary and middle school students
ZHU Yunjiao ; GU Fang ; MENG Jia ; LI Juanjuan ; SHEN Yu ; GAO Lei
Journal of Preventive Medicine 2025;37(1):1-6
Objective:
To investigate the situation and influencing factors of school bullying experienced by primary and middle school students, so as to provide the basis for formulating school bullying intervention measures and promoting students' physical and mental health development.
Methods:
All the counties (cities, districts) in Zhejiang Province were stratified to urban and suburban areas, primary, junior high and senior high school students were selected using a stratified cluster sampling method. Basic information, lifestyle and school bullying were collected through questionnaire surveys. Factors affecting school bullying experienced by primary and middle school students were analyzed using a multivariable logistic regression model.
Results:
Totally 137 846 valid questionnaires were recovered, with an effective recovery rate of 97.17%. There were 72 526 males (52.61%) and 65 320 females (47.39%). There were 47 561 primary school students (34.50%), 47 701 junior high school students (34.61%) and 42 584 senior high school students (30.89%). A total of 3 987 students suffered from school bullying, accounting for 2.89%. The proportions of being maliciously teased, being intentionally excluded from group activities/isolated, being teased about physical defects or appearance, being hit/kicked/pushed/shoved/locked in a room, being threatened, and being extorted for money were 2.04%, 1.18%, 1.11%, 0.86%, 0.84% and 0.83%, respectively. Multivariable logistic regression analysis showed that the students who were males (OR=1.122, 95%CI: 1.048-1.202), lived in suburban areas (OR=1.322, 95%CI: 1.233-1.418), lived in areas with medium (OR=1.086, 95%CI: 1.006-1.173) or underdeveloped (OR=1.298, 95%CI: 1.191-1.415) economic level, had higher academic levels (junior high school, OR=1.380, 95%CI: 1.270-1.499; senior high school, OR=1.210, 95%CI: 1.083-1.351), lived on campus (OR=1.489, 95%CI: 1.372-1.616), engaged in fights (OR=6.029, 95%CI: 5.585-6.509), attempted to smoke (OR=1.320, 95%CI: 1.128-1.545), drank (OR=1.735, 95%CI: 1.575-1.912), were scolded and beaten by parents (OR=1.972, 95%CI: 1.822-2.135) and were obese (OR=1.240, 95%CI: 1.132-1.360) were more likely to experience school bullying.
Conclusion
The harm of school bullying to the physical and mental health of primary and middle school students should be taken seriously, and active policy measures should be adopted to strengthen intervention.
4.Screening key genes of PANoptosis in hepatic ischemia-reperfusion injury based on bioinformatics
Lirong ZHU ; Qian GUO ; Jie YANG ; Qiuwen ZHANG ; Guining HE ; Yanqing YU ; Ning WEN ; Jianhui DONG ; Haibin LI ; Xuyong SUN
Organ Transplantation 2025;16(1):106-113
Objective To explore the relationship between PANoptosis and hepatic ischemia-reperfusion injury (HIRI), and to screen the key genes of PANoptosis in HIRI. Methods PANoptosis-related differentially expressed genes (PDG) were obtained through the Gene Expression Omnibus database and GeneCards database. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to explore the biological pathways related to PDG. A protein-protein interaction network was constructed. Key genes were selected, and their diagnostic value was assessed and validated in the HIRI mice. Immune cell infiltration analysis was performed based on the cell-type identification by estimating relative subsets of RNA transcripts. Results A total of 16 PDG were identified. GO analysis showed that PDG were closely related to cellular metabolism. KEGG analysis indicated that PDG were mainly enriched in cellular death pathways such as apoptosis and immune-related signaling pathways such as the tumor necrosis factor signaling pathway. GSEA results showed that key genes were mainly enriched in immune-related signaling pathways such as the mitogen-activated protein kinase (MAPK) signaling pathway. Two key genes, DFFB and TNFSF10, were identified with high accuracy in diagnosing HIRI, with areas under the curve of 0.964 and 1.000, respectively. Immune infiltration analysis showed that the control group had more infiltration of resting natural killer cells, M2 macrophages, etc., while the HIRI group had more infiltration of M0 macrophages, neutrophils, and naive B cells. Real-time quantitative polymerase chain reaction results showed that compared with the Sham group, the relative expression of DFFB messenger RNA in liver tissue of HIRI group mice increased, and the relative expression of TNFSF10 messenger RNA decreased. Cibersort analysis showed that the infiltration abundance of naive B cells was positively correlated with DFFB expression (r=0.70, P=0.035), and the infiltration abundance of M2 macrophages was positively correlated with TNFSF10 expression (r=0.68, P=0.045). Conclusions PANoptosis-related genes DFFB and TNFSF10 may be potential biomarkers and therapeutic targets for HIRI.
5.Invasion and Metastasis in Colorectal Cancer Mediated by Traditional Chinese Medicine via Cell Signaling Pathway: A Review
Min GUO ; Wenyan YU ; Naicheng ZHU ; Yuwei YAN ; Chen ZHONG ; Xiudan CHEN ; Nanxin LI ; Guojuan WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):323-330
Colorectal cancer is a common and malignant tumor in the digestive tract. Invasion and metastasis of cancer cells are key factors leading to the high mortality rate and postoperative recurrence of colorectal cancer. Chemotherapy is the main treatment method for preventing recurrence of this disease. However, there are many toxic side effects in clinical application, which seriously hinder the treatment process. Therefore, it is imperative to search for efficient and low-toxicity drugs. Traditional Chinese medicine (TCM) has a long history of treating colorectal cancer and offers advantages such as safety, effectiveness, multiple targets, multiple pathways and minimal toxic side effects, which have made it increasingly popular worldwide. According to TCM, the pathogenesis of colorectal cancer is rooted in both deficiency and excess. TCM formulas mainly focus on tonifying the body to address the invasion and metastasis of colorectal cancer, such as Jianpi compound, Jianpi Xiaoai decoction, and Bushen Jiedu Sanjie decoction. TCM monomers, such as emodin, berberine, and tanshinone, mainly focus on clearing heat and removing toxin, circulating blood and transforming stasis, and resolving swelling and dispersing nodules. Signaling pathways play a crucial role for analyzing invasion and metastasis, and research has shown that pathways such as Wnt/β-catenin, phosphatidylinositol-3 kinase/protein kinase (PI3K/Akt), Janus kinase 2/signal transduction and transcription activating factor 3 (JAK2/STAT3), nuclear factors-κB (NF-κB), vascular endothelial growth factor (VEGF) play important roles in the invasion and metastasis of colorectal cancer. The invasion and metastasis of colorectal cancer can be inhibited via regulating the key proteins and related factors in these pathways. In this review, we searched various literature databases, such as PubMed, China National Knowledge Infrastructure (CNKI), and VIP, using keywords such as "colorectal cancer", "signaling pathway", "invasion and metastasis", and "traditional Chinese medicine", to summarize and analyze the relevant pathways of TCM compounds and monomers against invasion and metastasis of colorectal cancer published in the past five years. The review aims to provide new insights and references for in-depth research on the therapy for invasion and metastasis of colorectal cancer and new drug development.
6.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.
7.Improvement effects and mechanism of total secondary ginsenosides on hypertrophic changes in cardiomyocytes
Bin LI ; Jia LI ; Zhongjie YUAN ; Mingjun ZHU ; Shiyang XIE ; Yuan GAO ; Rui YU ; Xinlu WANG
China Pharmacy 2025;36(12):1430-1435
OBJECTIVE To investigate the ameliorative effects and potential mechanism of total secondary ginsenosides (TSG) on hypertrophic changes of primary cardiomyocytes stimulated by angiotensin Ⅱ (Ang Ⅱ). METHODS Primary cardiomyocytes were isolated from the hearts of neonatal SD rats and divided into the following groups: control group, AngⅡ group (2 µmol/L), TSG group (7.5 µg/mL), PFK-015 group [6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3) inhibitor, 10 nmol/L], and TSG+PFK-015 group (TSG 7.5 µg/mL+PFK-015 10 nmol/L). The surface area, protein synthesis, energy metabolism-related indicators [free fatty acid (FFA), coenzyme A (CoA), acetyl coenzyme A (acetyl-CoA)], and the expressions of glycolysis-related factors [hypoxia-inducible factor 1α (HIF-1α), glucose transporter protein 4 (GLUT-4), lactate dehydrogenase A (LDHA), pyruvate dehydrogenase kinase 1 (PDK1) and PFKFB3] in primary cardiomyocytes of each group were measured. RESULTS Compared with the control group, the surface area of primary cardiomyocytes and protein synthesis were significantly increased, the content of FFA, protein and mRNA expressions of HIF-1α, LDHA, PDK1 and PFKFB3 were significantly increased or up-regulated in the AngⅡ group, while the contents of CoA and acetyl-CoA, the protein and mRNA expressions of GLUT-4 were significantly decreased or down-regulated (P<0.05). Compared with the AngⅡ group, both TSG group and PFK-015 group showed significant improvements in these indexes, with the TSG+PFK-015 group generally demonstrating superior effects compared to either treatment alone (P<0.05). CONCLUSIONS TSG can reduce the surface area of AngⅡ-induced primary cardiomyocytes, decrease protein synthesis, and inhibit their hypertrophic changes. These effects may be related to improving energy metabolism and the inhibition of glycolysis activity.
8.EGCG Promotes Aβ Clearance of Microglia Through Blockage of the HDAC6-PI3K/AKT/mTOR Signalling Axis Followed by Autophagy Activation
Yu LIN ; Kaiwen HUANG ; Honghai HONG ; Dan ZHU ; Yousheng MO ; Dongli LI ; Shuhuan FANG
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(3):486-497
ObjectiveTo clarify whether epigallocatechin gallate (EGCG) is involved in the clearance of amyloid β-protein (Aβ) and autophagy induction by microglia, so as to explore the potential mechanisms of EGCG in the prevention and treatment of Alzheimer's disease (AD). MethodsSix-month-old APP/PS1 mice were randomly divided into model and EGCG groups, with some additional wild type (WT) mice as the control group, each group consisting of 15 mice. The EGCG group received continuous gavage administration[5 mg/(kg·d)] for 8 weeks, followed by the open field test and Y-maze to assess the learning and memory abilities of the mice. Thioflavin-S staining was used to evaluate the content and distribution of amyloid β-protein (Aβ)in the brain parenchyma of the mice, and immunofluorescence was employed to detect the expression levels of Aβ1-42, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adapter molecule 1 (Iba1) in the hippocampal tissue of the mice. Additionally, N9 mouse microglial cells were induced with 20 µmol/L Aβ1-42, and the cell viability was measured after treatment with different concentrations of EGCG (5 µmol/L, 10 µmol/L, 20 µmol/L). Western blotting was used to detect the levels of Aβ1-42, low density lipoprotein receptor-related protein 1(LRP1), receptor for advanced glycation endproducts (RAGE), amyloid precursor protein (APP), insulin degrading enzyme (IDE), neprilysin (NEP), microtubule associated protein 1 hydrogen chain 3(LC3)-Ⅱ/LC3-Ⅰ, phosphatidylinositol 3-hydroxy kinase(PI3K), p-PI3K, protein kinase B (AKT), p-AKT, mammalian target of rapamycin (mTOR), p-mTOR, and histone deacetylase 6(HDAC6). Finally, through the co-culture of microglial cells and neuronal SH-SY5Y cells, cell viability and Caspase-3 levels were measured to verify the protective effect of EGCG-mediated Aβ clearance on neurons. ResultsEGCG increased the activity time and frequency of APP/PS1 mice in the central area of the open field (P<0.05), and enhanced the percentage of alternation in the Y-maze test (P<0.01); EGCG reduced Aβ deposition in the hippocampal tissue of APP/PS1 mice and increased the number of microglia; in vitro experiments showed that EGCG improved the survival rate of Aβ-induced N9 cells (P<0.01), upregulated RAGE activity (P<0.05), and promoted the internalization and phagocytosis of Aβ (P<0.01). ECGC activated microglial autophagy by downregulating the level of HDAC6 (P<0.05), inhibiting the phosphorylation of PI3K, AKT, mTOR (P<0.001), and increasing the LC3-Ⅱ/LC3-I ratio (P<0.001); EGCG improved the survival rate of SH-SY5Y cells (P<0.05) and reduced the activity of Caspase-3 (P<0.01) by clearing Aβ1-42 through microglia, and had a protective effect on neurons. ConclusionEGCG activates microglial autophagy to clear Aβ by targeting and inhibiting the HDAC6-PI3K/AKT/mTOR axis.
9.Macrophages in xenotransplantation
Xuyuan ZHU ; Yu ZHANG ; Yuxiang CHEN ; Tao LI ; Xiaojie MA ; Hongtao JIANG
Organ Transplantation 2025;16(4):495-501
Xenotransplantation is one of the effective ways to overcome the shortage of donor organs. However, the molecular incompatibility between xenotransplantation donors and recipients can cause rejection, which greatly limits the clinical application of xenotransplantation. In recent years, researchers have deeply explored the mechanism of xenotransplantation rejection through xenotransplantation models of pig-to-monkey and pig-to-brain death recipients, and found that the innate immune system plays an important role in rejection. Macrophages, as phagocytes in the innate immune system, not only damage xenografts through phagocytosis but also interact with other immune cells to influence the immune microenvironment of xenotransplantation. However, due to the heterogeneity of macrophages, their phenotypes and functions in xenotransplantation rejection remain unclear. Therefore, it is necessary to further explore the role of macrophages in xenotransplantation rejection. This article reviews the latest research progress of macrophages in xenotransplantation rejection, aiming to explore the mechanisms of macrophages in xenotransplantation rejection and provide references for future research.
10.Effects and mechanism of triptolide on cerebral ischemia-reperfusion injury in rats
Dongjie ZHU ; Xinzheng HE ; Jie ZOU ; Shidan YU ; Hongxia LI
Journal of Pharmaceutical Practice and Service 2025;43(7):339-343
Objective To investigate the effect of triptolide on cerebral ischemia- reperfusion injury (CIRI) and explore its molecular mechanism. Methods One hundred and forty-four Wistar rats were randomly divided into sham operation group, model group, low, medium, high dose of triptolide group and butylphthalide group, with 24 rats in each group. The CIRI rat model was established by blocking the middle cerebral artery for 2 hours. 3 days before modeling, the rats in each group were ip administration once a day. 24 hours after reperfusion, the neurological deficit score was detected, the rate of cerebral infarction was measured by TTC staining, the blood brain barrier (BBB) permeability was detected by EB penetration test. The pathological changes neurons in the ischemic penumbra cortex were observed by HE and TUNEL staining. The content of inflammatory factors in ischemic cerebral cortex were detected by Elisa method. The expression of TLR4/NF-κB pathway related proteins were detected by Western blot. Results Compared with the model group, the neurological deficit score, cerebral infarction rate and EB content in the triptolide middle, high dose groups and the butylphthalide group were significantly decreased (P<0.05). The pathological changes of cortical neurons in the ischemic penumbra were significantly improved, and the apoptosis rate of neurons was significantly decreased (P<0.05). The content of TNF-α, IL-1β and the expression of TLR4, p-NF-κB, cleaved caspase-3, Bax were significantly decreased, the expression of Bcl-2 was significantly increased, the ratio of p-NF-κB/NF-κB and Bax/Bcl-2 were significantly decreased (P<0.05). The regulatory effect of the high dose triptolide group on various detection indexes were better than that of the butylphthalide group (P<0.05). Conclusion Triptolide could protect the permeability of BBB, improve the neurological deficit and neuropathy in CIRI rats, and reduce the rate of cerebral infarction, its mechanism may be related to the inhibition of TLR4/NF-κB pathway and which mediated inflammatory response and neuronal apoptosis.


Result Analysis
Print
Save
E-mail