1.Practice of PIVAS operation cost-benefit management in a hospital based on lean Six Sigma management
Lei HUANG ; Hui ZHANG ; Zhou GENG ; Aiming SHI ; Jie PAN
China Pharmacy 2025;36(1):13-18
OBJECTIVE To explore the practice and application effect of lean Six Sigma (LSS) management in the cost- benefit management of PIVAS operation in a tertiary comprehensive hospital (hereinafter referred to as “S Hospital”), providing reference for the operation and management of PIVAS in hospitals. METHODS The five steps (define, measure, analyze, improve and control, i.e. DMAIC) of LSS management were implemented for PIVAS operation cost-benefit of S Hospital, and lean management was implemented for its cost-benefit management elements (human resource cost, medical and health material cost, and all-in-one parenteral nutrition preparation income). Several intervention measures including personnel training and performance assessment, refined management system of consumables, and doctor’s advice package of full parenteral nutrition were developed. Finally, the overall improvement effect was evaluated by the total benefit, total cost and net benefit of PIVAS. The effects of human resource allocation optimization and improvement were evaluated by the work efficiency, work quality, job satisfaction, turnover rate and accumulated rest days. The effects of consumables cost management were evaluated by the amount of medical and health materials cost. The improvement effects of all-in-one parenteral nutrition preparation income were evaluated by the profit amount, quantity and the proportion of single bottle of parenteral nutrition. RESULTS After implementing DMAIC in S Hospital, the total benefit of PIVAS was increased from (471 366.50±9 201.5) yuan/month to (479 679.50±14 320.14) yuan/month (P> 0.05), the total cost was decreased from (305 878.88±3 201.75) yuan/month to (294 610.59±5 007.33) yuan/month (P<0.05), and the net benefit of PIVAS was increased by 11.83% compared with that before the improvement. The work efficiency, work quality and job satisfaction of employees were significantly improved, the accumulated rest days were significantly reduced, and the turnover rate of third-party employees was reduced from 15.0% before the improvement to 7.5% after the improvement. The cost of medical and health materials significantly decreased from (67 826.42±2 812.76) yuan/month before improvement to (56 384.33±4 607.67) yuan/month after improvement (P<0.05). The quantity of all-in-one parenteral nutrition was significantly increased from (1 263.75±135.83) group/month before improvement to (2 061.25±89.04) group/month after improvement (P<0.05), and the proportion of users of single bottle of parenteral nutrition in total users decreased from 93.25% before improvement to 58.75% after improvement. The profit of all-in-one parenteral nutrition was 63.18% higher than that before implementing DMAIC. CONCLUSIONS The implementation of PIVAS operation cost-benefit management based on DMAIC is conducive to strengthening the cost control of PIVAS and promoting the healthy development of PIVAS.
2.Effect and mechanism of Qingxue xiaozhi jiangtang formula on insulin resistance in rats with type 2 diabetes mellitus
Yuxin HONG ; Lei ZHANG ; Mingxue ZHOU ; Sinai LI ; Li LIN ; Meng ZHANG ; Zixuan GUO ; Weihong LIU
China Pharmacy 2025;36(1):24-29
OBJECTIVE To investigate the improvement effect and potential mechanism of Qingxue xiaozhi jiangtang formula on insulin resistance (IR) in type 2 diabetes mellitus (T2DM) rats. METHODS T2DM rat model was established by intraperitoneal injection of 30 mg/kg streptozotocin combined with high-fat and high-sugar diet. The rats were randomly divided into normal control group, model group, Qingxue xiaozhi jiangtang formula low-dose and high-dose groups (6.525, 13.05 g/kg, calculated by raw material) and metformin group (positive control, 0.18 g/kg), with 8 rats in each group. Administration groups were given relevant medicine intragastrically; normal control group and model group were given constant volume of normal saline intragastrically, once a day, for consecutive 6 weeks. Body mass and fasting blood glucose (FBG) were determined, and oral glucose tolerance test was conducted. Serum fasting insulin (FINS) level was measured to calculate the insulin resistance index (HOMA-IR) and insulin sensitivity index (ISI). Additionally, the level of serum lipids, liver function, oxidative stress indicators and inflammatory factors were assessed. The phosphorylation levels of kinase R-like endoplasmic reticulum kinase (PERK) and forkhead box O1 (FOXO1) protein in liver tissue of rats were determined. RESULTS Compared with model group, the body weight, ISI, the levels of high-density lipoprotein cholesterol and superoxide dismutase were increased significantly in Qingxue xiaozhi jiangtang formula high-dose group and metformin group (P<0.05); FBG, blood glucose level at 120 minutes of glucose loading, area under the curve of glucose, FINS, HOMA-IR, low-density lipoprotein cholesterol, total cholesterol, triglyceride, alanine transaminase, aspartate transaminase, alkaline phosphatase, malondialdehyde, interleukin-6, tumor necrosis factor-α, and C-reactive protein levels were significantly reduced (P< Δ0.05); the pathological damage of liver tissue had significantlyimproved, and the phosphorylation levels of PERK and FOXO1 proteins in liver tissue were significantly decreased (P<0.05). CONCLUSIONS Qingxue xiaozhi jiangtang formula can regulate glucose and lipid metabolism, inflammation factor and oxidative stress levels, and alleviate insulin resistance in T2DM rats. Its mechanism of action may be related to the inhibition of the PERK/FOXO1 signaling pathway.
3.Effects of Electroacupuncture at "Fengchi" (GB 20), "Waiguan" (TE 5), and "Yanglingquan" (GB 34) on Nociceptive Sensitization and PKC/TRPV1 Pathway in the Trigeminal Ganglion of Chronic Migraine Model Rats
Yixiang ZENG ; Runze TU ; Shucong ZHAO ; Yang YANG ; Haojia WEN ; Zhuozhong HE ; Shengli ZHOU ; Lei TAN ; Ke HE ; Lei FU
Journal of Traditional Chinese Medicine 2025;66(3):283-289
ObjectiveTo explore the possible mechanisms of electroacupuncture at Fengchi (GB 20), Waiguan (TE 5), and Yanglingquan (GB 34) in treating chronic migraine from the perspective of nociceptive sensitization. MethodsForty SPF-grade SD rats were randomly divided into blank group, model group, electroacupuncture group, electroacupuncture + agonist group, and inhibitor group, with 8 rats in each group. Except for the blank group, rats were injected intraperitoneally with nitroglycerin to establish a chronic migraine rat model. After successful modeling, the electroacupuncture group received electroacupuncture at bilateral "Fengchi" (GB 20), "Waiguan" (TE 5), and "Yanglingquan" (GB 34) for 30 minutes each session. The electroacupuncture + agonist group received the same electroacupuncture treatment and additional injection of protein kinase C (PKC) agonist Phorbol 12-myristate 13-acetate (1.0 ng/μl, 25 μl) via the infraorbital foramen. The inhibitor group received PKC inhibitor Chelerythrine Chloride (1.0 ng/μl, 10 μl) via the infraorbital foramen. The blank group, model group, and inhibitor group underwent restraint for 30 minutes without other interventions. All groups were continuously intervened for 5 days. After the intervention, the nociceptive thresholds (mechanical and thermal pain) of the periorbital area and hind paw were measured. The expression levels of transient receptor potential vanillic acid subtype 1 (TRPV1), phosphorylated TRPV1 (p-TRPV1), PKC proteins, Trpv1, Pkc mRNA, and the average fluorescence intensity of transient receptor potential vanillic acid subtype 1 (TRPV1) and PKC in the trigeminal ganglion were detected using Western Blot, real-time fluorescence quantitative PCR, and immunofluorescence methods. ResultsCompared with the blank group, the mechanical and thermal pain thresholds of the periorbital area and hind paw were reduced in the model group, and the protein levels of TRPV1, PKC, p-TRPV1, as well as the mRNA expression of Trpv1 and Pkc, and the average fluorescence intensity of TRPV1 and PKC in the trigeminal ganglion significantly increased (P<0.05 or P<0.01). Compared with the model group, the electroacupuncture group exhibited increased mechanical and thermal pain thresholds in the periorbital and hind paw areas, and decreased protein levels of TRPV1, PKC, p-TRPV1, mRNA expression of Trpv1 and Pkc, and average fluorescence intensity of TRPV1. In the electroacupuncture + agonist group, the average fluorescence intensity of TRPV1 in the trigeminal ganglion decreased. The inhibitor group exhibited increased mechanical pain thresholds in the periorbital area and thermal pain thresholds in the hind paw, along with decreased protein levels of TRPV1, PKC, p-TRPV1, and the average fluorescence intensity of TRPV1 and PKC (P<0.05 or P<0.01). Compared with the electroacupuncture group, the electroacupuncture + agonist group showed an increase in the protein levels of TRPV1, PKC, p-TRPV1, and the mRNA expression of Trpv1 (P<0.05 or P<0.01). ConclusionElectroacupuncture at the "Fengchi" (GB 20), "Waiguan" (TE 5), and "Yanglingquan" (GB 34) acupoints can increase the mechanical and thermal pain thresholds in chronic migraine rats and alleviate nociceptive sensitization. The mechanism may be related to the inhibition of PKC/TRPV1 pathway.
4.Textual Research on Key Information of Famous Classical Formula Jiegengtang
Yang LEI ; Yuli LI ; Xiaoming XIE ; Zhen LIU ; Shanghua ZHANG ; Tieru CAI ; Ying TAN ; Weiqiang ZHOU ; Zhaoxu YI ; Yun TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):182-190
Jiegengtang is a basic formula for treating sore throat and cough. By means of bibliometrics, this study conducted a textual research and analysis on the key information such as formula origin, decocting methods, and clinical application of Jiegengtang. After the research, it can be seen that Jiegengtang is firstly contained in Treatise on Febrile and Miscellaneous Disease, which is also known as Ganjietang, and it has been inherited and innovated by medical practitioners of various dynasties in later times. The origins of Chinese medicines in this formula is basically clear, Jiegeng is the dried roots of Platycodon grandiflorum, Gancao is the dried roots and rhizomes of Glycyrrhiza uralensis, the two medicines are selected raw products. The dosage is 27.60 g of Glycyrrhizae Radix et Rhizoma and 13.80 g of Platycodonis Radix, decocted with 600 mL of water to 200 mL, taken warmly after meals, twice a day, 100 mL for each time. In ancient times, Jiegengtang was mainly used for treating Shaoyin-heat invasion syndrome, with cough and sore throat as its core symptoms. In modern clinical practice, Jiegengtang is mainly used for respiratory diseases such as pharyngitis, esophagitis, tonsillitis and lung abscess, especially for pharyngitis and lung abscess with remarkable efficacy. This paper can provide literature reference basis for the modern clinical application and new drug development of Jiegengtang.
5.Textual Research on Key Information of Famous Classical Formula Jiegengtang
Yang LEI ; Yuli LI ; Xiaoming XIE ; Zhen LIU ; Shanghua ZHANG ; Tieru CAI ; Ying TAN ; Weiqiang ZHOU ; Zhaoxu YI ; Yun TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):182-190
Jiegengtang is a basic formula for treating sore throat and cough. By means of bibliometrics, this study conducted a textual research and analysis on the key information such as formula origin, decocting methods, and clinical application of Jiegengtang. After the research, it can be seen that Jiegengtang is firstly contained in Treatise on Febrile and Miscellaneous Disease, which is also known as Ganjietang, and it has been inherited and innovated by medical practitioners of various dynasties in later times. The origins of Chinese medicines in this formula is basically clear, Jiegeng is the dried roots of Platycodon grandiflorum, Gancao is the dried roots and rhizomes of Glycyrrhiza uralensis, the two medicines are selected raw products. The dosage is 27.60 g of Glycyrrhizae Radix et Rhizoma and 13.80 g of Platycodonis Radix, decocted with 600 mL of water to 200 mL, taken warmly after meals, twice a day, 100 mL for each time. In ancient times, Jiegengtang was mainly used for treating Shaoyin-heat invasion syndrome, with cough and sore throat as its core symptoms. In modern clinical practice, Jiegengtang is mainly used for respiratory diseases such as pharyngitis, esophagitis, tonsillitis and lung abscess, especially for pharyngitis and lung abscess with remarkable efficacy. This paper can provide literature reference basis for the modern clinical application and new drug development of Jiegengtang.
6.Huayu Mingmu Prescription Downregulates PI3K/Akt/mTOR-HIF-1α/VEGFA Signaling Pathway to Intervene in Retinal Angiogenesis of DR Rats
Xiaoqiu MA ; Lei ZHAO ; Huimin ZHOU ; Fanghui ZHENG ; Guoqing YANG ; Tao ZUO ; Xiande MA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):78-87
ObjectiveTo observe the effect of Huayu Mingmu prescription on retinal angiogenesis and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR)-hypoxia inducible factor-1α/vascular endothelial growth factor A (HIF-1α/VEGFA) signaling pathway in diabetic retinopathy (DR) rats. MethodsSixty-four SPF-grade male SD rats were used in the study. Eleven rats were randomly selected as the normal group, while the remaining 53 rats were fed a high-sugar, high-fat diet combined with low-dose streptozotocin (STZ) intraperitoneal injection to establish a type 2 diabetes mellitus (T2DM) rat model. DR model evaluation was performed after 12 weeks of diabetes. The rats were then divided into model, low-dose, medium-dose, and high-dose groups of Huayu Mingmu prescription (9.29, 18.57, 37.14 g·kg-1), and a calcium dobesilate group (0.16 g·kg-1), with 10 rats in each group. The rats were orally administered the corresponding doses of Huayu Mingmu prescription and calcium dobesilate. The normal and model groups received equal volumes of physiological saline via gavage for 8 consecutive weeks. Retinal vascular changes were observed through fundus photography, and pathological changes in retinal tissue were evaluated using hematoxylin-eosin (HE) staining. Retinal microvascular pathological changes were examined through retinal vascular network preparation and periodic acid-Schiff (PAS) staining. Immunofluorescence (IF) was used to detect the expression of VEGFA and angiopoietin-2 (Ang-2) in retinal tissue. Western blot was employed to detect the protein expression of PI3K, Akt, mTOR, HIF-1α, VEGFA, and VEGFR2 in retinal tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to assess the mRNA expression of PI3K, Akt, mTOR, HIF-1α, VEGFA, and VEGFR2 in retinal tissue. ResultsCompared with the normal group, the model group exhibited significant pathological changes in retinal tissue, including the appearance of acellular capillaries, as well as significant endothelial cell (E) proliferation and pericyte (P) loss (P<0.01). The E/P was significantly elevated (P<0.01). Protein and mRNA expression levels of PI3K, Akt, mTOR, HIF-1α, VEGFA, and VEGFR2 in retinal tissue were significantly increased (P<0.01), and the expression of Ang-2 protein was significantly elevated (P<0.01). In contrast, retinal tissue in the treatment groups showed alleviated pathological changes, with reduced endothelial cell proliferation and pericyte loss (P<0.05, P<0.01). Among the treatment groups, the high-dose Huayu Mingmu prescription and the calcium dobesilate group exhibited a decreased E/P (P<0.01). Protein and mRNA expression levels of PI3K, Akt, mTOR, HIF-1α, VEGFA, and VEGFR2 in retinal tissue were significantly reduced (P<0.05, P<0.01), and the expression of Ang-2 protein was significantly decreased (P<0.01). ConclusionHuayu Mingmu prescription can intervene in retinal neovascularization in DR rats, delay the progression of DR, and its mechanism may be related to antagonizing the PI3K/Akt/mTOR-HIF-1α/VEGFA signaling pathway.
7.Trends in global burden due to visceral leishmaniasis from 1990 to 2021 and projections up to 2035
Guobing YANG ; Aiwei HE ; Yongjun LI ; Shan LÜ ; Muxin CHEN ; Liguang TIAN ; Qin LIU ; Lei DUAN ; Yan LU ; Jian YANG ; Shizhu LI ; Xiaonong ZHOU ; Jichun WANG ; Shunxian ZHANG
Chinese Journal of Schistosomiasis Control 2025;37(1):35-43
Objective To investigate the global burden of visceral leishmaniasis (VL) from 1990 to 2021 and predict the trends in the burden of VL from 2022 to 2035, so as to provide insights into global VL prevention and control. Methods The global age-standardized incidence, prevalence, mortality and disability-adjusted life years (DALYs) rates of VL and their 95% uncertainty intervals (UI) were captured from the Global Burden of Disease Study 2021 (GBD 2021) data resources. The trends in the global burden of VL were evaluated with average annual percent change (AAPC) and 95% confidence interval (CI) from 1990 to 2021, and gender-, age-, country-, geographical area- and socio-demographic index (SDI)-stratified burdens of VL were analyzed. The trends in the global burden of VL were projected with a Bayesian age-period-cohort (BAPC) model from 2022 to 2035, and the associations of age-standardized incidence, prevalence, mortality, and DALYs rates of VL with SDI levels were examined with a smoothing spline model. Results The global age-standardized incidence [AAPC = -0.25%, 95% CI: (-0.25%, -0.24%)], prevalence [AAPC = -0.06%, 95% CI: (-0.06%, -0.06%)], mortality [AAPC = -0.25%, 95% CI: (-0.25%, -0.24%)] and DALYs rates of VL [AAPC = -2.38%, 95% CI: (-2.44%, -2.33%)] all appeared a tendency towards a decline from 1990 to 2021, and the highest age-standardized incidence [2.55/105, 95% UI: (1.49/105, 4.07/105)], prevalence [0.64/105, 95% UI: (0.37/105, 1.02/105)], mortality [0.51/105, 95% UI: (0, 1.80/105)] and DALYs rates of VL [33.81/105, 95% UI: (0.06/105, 124.09/105)] were seen in tropical Latin America in 2021. The global age-standardized incidence and prevalence of VL were both higher among men [0.57/105, 95% UI: (0.45/105, 0.72/105); 0.14/105, 95% UI: (0.11/105, 0.18/105)] than among women [0.27/105, 95% UI: (0.21/105, 0.33/105); 0.06/105, 95% UI: (0.05/105, 0.08/105)], and the highest mortality of VL was found among children under 5 years of age [0.24/105, 95% UI: (0.08/105, 0.66/105)]. The age-standardized incidence (r = -0.483, P < 0.001), prevalence (r = -0.483, P < 0.001), mortality (r = -0.511, P < 0.001) and DALYs rates of VL (r = -0.514, P < 0.001) correlated negatively with SDI levels from 1990 to 2021. In addition, the global burden of VL was projected with the BAPC model to appear a tendency towards a decline from 2022 to 2035, and the age-standardized incidence, prevalence, mortality and DALYs rates were projected to be reduced to 0.11/105, 0.03/105, 0.02/105 and 1.44/105 in 2035, respectively. Conclusions Although the global burden of VL appeared an overall tendency towards a decline from 1990 to 2021, the burden of VL showed a tendency towards a rise in Central Asia and western sub-Saharan African areas. The age-standardized incidence and prevalence rates of VL were relatively higher among men, and the age-standardized mortality of VL was relatively higher among children under 5 years of age. The global burden of VL was projected to continue to decline from 2022 to 2035.
8.Effect and mechanism of bumetanide on lung injury in chronic obstructive pulmonary disease model rats
Yu LEI ; Jing LU ; Wenjuan HE ; Jiaying GU ; Dengfeng ZHOU
China Pharmacy 2025;36(8):939-944
OBJECTIVE To investigate the effect and mechanism of bumetanide on lung injury in chronic obstructive pulmonary disease (COPD) model rats. METHODS COPD rat model was induced by lipopolysaccharide, and they were randomly divided into model group (COPD group), bumetanide low-dose and high-dose groups (Bumetanide-L group, Bumetanide-H group), bumetanide high-dose+Yes-associated protein/transcriptional coactivator containing PDZ-binding motif (YAP/TAZ) signaling pathway activator group (Bumetanide-H+PY-60 group), with 12 rats in each group. Another 12 normal rats were selected as normal control group (Control group). Thirty minutes before modeling, bumetanide/normal saline was inhaled or/and PY-60/ normal saline was injected into the tail vein. On the next day after the completion of modeling and drug administration, the pulmonary function index of the rats in each group was measured [forced expiratory volume in 0.3 seconds (FEV0.3), forced vital capacity (FVC), peak expiratory flow (PEF), FEV0.3/FVC]. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β in bronchoalveolar lavage fluid (BALF) were determined; the pathological morphology of lung tissue and degree of pulmonary fibrosis were observed. The expression levels of transforming growth factor- β (TGF- β), α -smooth muscle actin (α-SMA) and TAZ protein as well as the phosphorylation of YAP protein in lung tissues were detected. RESULTS Compared with COPD group, the pathological injury of lung tissue in Bumetanide-L and Bumetanide-H groups was alleviated; the exfoliation of lung epithelial cells, tube wall thickening and the degree of pulmonary fibrosis were alleviated; inflammatory cell infiltration was reduced, and blue collagen deposition was reduced; FEV0.3, FVC, FEV0.3/FVC and PEF were significantly increased, while the lung injury score, levels of TNF-α, IL-6, IL-1β, expression levels of TGF-β, α-SMA and TAZ protein and the phosphorylation of YAP protein were significantly decreased (P<0.05). PY-60 could significantly reverse the improvement effects of bumetanide on above indexes (P<0.05). CONCLUSIONS Bumetanide can alleviate lung injury, inflammatory response and pulmonary fibrosis in COPD rats, and its mechanism is related to inhibiting YAP/TAZ signaling pathway.
9.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
10.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.

Result Analysis
Print
Save
E-mail