1.Etiology and Management of Astronaut Low Back Pain Induced by Space Flight or Simulated Microgravity
Yan-Feng LIU ; Jing LEI ; Hao-Jun YOU
Progress in Biochemistry and Biophysics 2025;52(1):133-146
It has been demonstrated that long-term space flights have a significantly greater impact on the cardiovascular, skeletal, and nervous systems of astronauts. The structural and functional alterations in the skeletal and muscular systems resulting from exposure to weightlessness can lead to the development of low back pain, significantly impairing the ability of astronauts to perform tasks and respond to emergencies. Both space flight and simulated microgravity have been shown to result in low back pain among astronauts, with the following factors identified as primary contributors to this phenomenon. The occurrence of intervertebral disc (IVD) edema results in the stimulation of type IV mechanoreceptors, which subsequently activate nociceptive afferents. The protrusion of an IVD causes compression of the spinal nerve roots. Furthermore, the elongation of the vertebral column and/or the diminished lumbar curvature of the spine exert traction on the dorsal root nerves. Paravertebral muscle degeneration leads to the inhibition of decreased nociceptive activity of the wide-dynamic range neurons of the spinal dorsal horn. Moreover, endogenous pain descending facilitation triggered by conditioning stimulation can be enhanced via the thalamic mediodorsal nuclei, while endogenous pain descending inhibition triggered by conditioning stimulation can be weakened via the thalamic ventromedial nuclei. Psychological factors may contribute to the development of low back pain. The mechanisms governing the generation, maintenance, and alleviation of low back pain in weightlessness differ from those observed in normal gravitational environments. This presents a significant challenge for space medicine research. Therefore, the elucidation of the occurrence and development mechanism of low back pain in weightlessness is important for the prevention and treatment during space flight. To reduce the incidence of low back pain during long-term missions on the space station, astronauts may choose to wear specialized space clothing that can provide axial physiological loads, designed to stimulate both musculature and skeletal structures, mitigating potential increases in vertebral column length, diminished lumbar curvature, and intervertebral disc edema and/or muscular atrophy. Additionally, assuming a “fetal tuck position” described as the knees to chest position may increase lumbar IVD hydrostatic pressure, subsequently reducing disc volume, rectifying diminished lumbar curvature, and alleviating dorsal root nerve tensions. Moreover, this position may reduce type IV mechanoreceptor facilitation and nerve impulse propagation from the sinuvertebral nerves of the annulus fibrosus. Elongated posterior soft tissues (apophyseal joint capsules and ligaments) with spinal flexion may potentially stimulate type I and II mechanoreceptors. It is also recommended to exercise the paraspinal muscles to prevent and alleviate the decrease in their cross-sectional area and maintain their structure and function. Photobiomodulation has been proved to be an effective means of activating the pain descending inhibition pathway of the central nervous system. In addition, astronauts should be encouraged to participate in mission-related activities and strive to avoid psychological problems caused by the long-term confinement in a small space station. The article presents a concise review of potential causes and targeted treatment strategies for low back pain induced by space flight or simulated microgravity in recent years. Its objective is to further elucidate the mechanisms underlying the occurrence and development of low back pain in weightless environments while providing scientific evidence to inform the development of guidelines for preventing, treating, and rehabilitating low back pain during long-term space flights.
2.History, Experience, Opportunities, and Challenges in Esophageal Cancer Prevention and Treatment in Linxian, Henan Province, A High Incidence Area for Esophageal Cancer
Lidong WANG ; Xiaoqian ZHANG ; Xin SONG ; Xueke ZHAO ; Duo YOU ; Lingling LEI ; Ruihua XU ; Jin HUANG ; Wenli HAN ; Ran WANG ; Qide BAO ; Aifang JI ; Lei MA ; Shegan GAO
Cancer Research on Prevention and Treatment 2025;52(4):251-255
Linxian County in Henan Province, Northern China is known as the region with the highest incidence and mortality rate of esophageal cancer worldwide. Since 1959, the Henan medical team has conducted field work on esophageal cancer prevention and treatment in Linxian. Through three generations of effort exerted by oncologists over 65 years of research on esophageal cancer prevention and treatment in Linxian, the incidence rate of esophageal squamous cell carcinoma in this area has dropped by nearly 50%, and the 5-year survival rate has increased to 40%, reaching the international leading
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
6.Cost-effectiveness analysis of insulin degludec and insulin aspart in Chinese patients with type 2 diabetes mellitus
Jiali QIN ; Yawen ZHANG ; Lei ZHANG ; Shan JIANG ; Xiaoyan YOU ; Xiaomei WANG ; Xianying WANG
China Pharmacy 2025;36(22):2809-2814
OBJECTIVE To evaluate the long-term cost-effectiveness of insulin degludec and insulin aspart (IDegAsp) in patients with type 2 diabetes mellitus (T2DM) in China. METHODS A cost-effectiveness analysis was conducted from the perspective of the Chinese healthcare system, using the CORE diabetes model to simulate long-term (20-year) health and economic outcomes. Baseline cohort characteristics and treatment effect data were derived from the CREATE study. The prices of glucose- lowering drugs were obtained from medical insurance payment standards and the average winning bid prices in the follow-up round of the specialized centralized procurement for insulin, while the daily dosages were derived from the CREATE study. The costs of complications and utility values were obtained from published literature, with a discount rate of 5%. One-way sensitivity analysis, scenario analysis, and probabilistic sensitivity analysis were performed to verify the robustness of the results. RESULTS Patients switching from previous once-daily basal insulin regimens to IDegAsp therapy gained an incremental 0.190 quality-adjusted life year (QALY) with direct medical cost savings of 42 163.58 yuan. For those switching from premixed insulin therapies, IDegAsp treatment provided 0.130 incremental QALY and reduced direct healthcare costs by 41 129.11 yuan. The outcome was significantly influenced by the discount rate and the cost of complications. Probabilistic sensitivity analysis and scenario analysis confirmed the robustness of these findings. CONCLUSIONS Switching from previous daily basal insulin or premixed insulin regimens to IDegAsp in Chinese patients with T2DM can improve patients’ long-term health outcomes and achieve cost savings, making it a more cost-effective treatment option.
7.Novel paradigms in KRAS targeting: Unveiling strategies to combat drug resistance.
Xiyuan LUO ; Feihan ZHOU ; Yuemeng TANG ; Xiaohong LIU ; Ruilin XIAO ; Minzhi GU ; Jialu BAI ; Decheng JIANG ; Gang YANG ; Lei YOU ; Yupei ZHAO
Chinese Medical Journal 2025;138(18):2243-2267
The Kirsten rat sarcoma viral oncogene homolog ( KRAS ) mutation is one of the most prevalent activating alterations in cancer. It indicates a poor overall prognosis due to its highly invasive nature. Although several KRAS inhibitors have been developed in recent years, a significant clinical challenge has emerged as a substantial proportion of patients eventually develop resistance to these therapies. Therefore, identifying determinants of drug resistance is critical for guiding treatment strategies. This review provides a comprehensive overview of the mutation landscape and molecular mechanisms of KRAS activity in various cancers. Meanwhile, it summaries the progress and prospects of small molecule KRAS inhibitors undergoing clinical trials. Furthemore, this review explores potential strategies to overcome drug resistance, with the ultimate goal of steering toward patient-centric precision oncology in the foreseeable future.
Humans
;
Drug Resistance, Neoplasm/drug effects*
;
Proto-Oncogene Proteins p21(ras)/metabolism*
;
Mutation/genetics*
;
Neoplasms/genetics*
;
Antineoplastic Agents/therapeutic use*
8.Research progress on the role and mechanism of endothelin-1 in pain.
Cong-Kun HU ; Hao-Jun YOU ; Jing LEI
Acta Physiologica Sinica 2025;77(1):120-130
Endothelin-1 is a peptide derived from endothelial cells, consisting of 21 amino acid residues. In recent years, research has found that endothelin-1 not only plays a key role in vascular tone regulation but also participates in the occurrence and development of various types of pathological pain, including inflammatory pain, neuropathic pain, and cancer pain. Endothelin-1 binds to its receptors and activates multiple signaling pathways such as protein kinase C, calcium ion channels, and the phosphoinositide pathway, thereby influencing neuronal excitability and nociceptive information transmission. This article briefly reviews the current understanding of the mechanisms and potential roles of endothelin-1 in the development of pain, as well as commonly used endothelin-1 receptor antagonists, aiming to provide clues for better utilizing endothelin-1 and its receptors to alleviate and treat pathological pain.
Humans
;
Endothelin-1/physiology*
;
Pain/physiopathology*
;
Signal Transduction/physiology*
;
Animals
;
Neuralgia/physiopathology*
;
Cancer Pain/physiopathology*
;
Endothelin Receptor Antagonists
9.Research progress of JAK/STAT signaling pathway in rheumatoid arthritis pain.
Zhen-Qiang LIU ; Hao-Jun YOU ; Jing LEI
Acta Physiologica Sinica 2025;77(1):131-138
Rheumatoid arthritis (RA) is a common systemic inflammatory autoimmune disease characterized by synovitis and bone destruction. Its clinical characteristics are mainly joint pain, swelling, stiffness and joint deformity. Due to the poor efficacy of both drug and non-drug therapies, RA can significantly impact patients' quality of life and increase personal and socioeconomic burdens. Studies have found that the Janus kinase (JAK)/signal transduction and activator of transcription (STAT) pathway, as classical intracellular signaling pathway, plays an important role in the occurrence and development of connective tissue diseases by regulating inflammation, immunity, and cell differentiation. This article reviews the research progress on the involvement of JAK/STAT signaling pathway in the mechanism of RA pathological pain, in order to provide some reference for understanding the pathogenesis of RA pathological pain and developing specific drug.
Arthritis, Rheumatoid/metabolism*
;
Humans
;
Signal Transduction/physiology*
;
Janus Kinases/metabolism*
;
STAT Transcription Factors/metabolism*
;
Pain/etiology*
;
Animals
10.The neurophysiological mechanisms of exercise-induced improvements in cognitive function.
Jian-Xiu LIU ; Bai-Le WU ; Di-Zhi WANG ; Xing-Tian LI ; Yan-Wei YOU ; Lei-Zi MIN ; Xin-Dong MA
Acta Physiologica Sinica 2025;77(3):504-522
The neurophysiological mechanisms by which exercise improves cognitive function have not been fully elucidated. A comprehensive and systematic review of current domestic and international neurophysiological evidence on exercise improving cognitive function was conducted from multiple perspectives. At the molecular level, exercise promotes nerve cell regeneration and synaptogenesis and maintains cellular development and homeostasis through the modulation of a variety of neurotrophic factors, receptor activity, neuropeptides, and monoamine neurotransmitters, and by decreasing the levels of inflammatory factors and other modulators of neuroplasticity. At the cellular level, exercise enhances neural activation and control and improves brain structure through nerve regeneration, synaptogenesis, improved glial cell function and angiogenesis. At the structural level of the brain, exercise promotes cognitive function by affecting white and gray matter volumes, neural activation and brain region connectivity, as well as increasing cerebral blood flow. This review elucidates how exercise improves the internal environment at the molecular level, promotes cell regeneration and functional differentiation, and enhances the brain structure and neural efficiency. It provides a comprehensive, multi-dimensional explanation of the neurophysiological mechanisms through which exercise promotes cognitive function.
Animals
;
Humans
;
Brain/physiology*
;
Cognition/physiology*
;
Exercise/physiology*
;
Nerve Regeneration/physiology*
;
Neuronal Plasticity/physiology*

Result Analysis
Print
Save
E-mail