1.Zuoguiwan Mitigates Oxidative Stress in Rat Model of Hyperthyroidism Due to Kidney-Yin Deficiency via DRD4/NOX4 Pathway
Ling LIN ; Qianming LIANG ; Changsheng DENG ; Li RU ; Zhiyong XU ; Chao LI ; Mingshun SHEN ; Yueming YUAN ; Muzi LI ; Lei YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):43-51
ObjectiveTo decipher the mechanism by which Zuoguiwan (ZGW) treat hyperthyroidism in rats with kidney-Yin deficiency based on the dopamine receptor D4 (DRD4)/nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) signaling pathway. MethodsThe rat model of kidney-Yin deficiency was induced by unilateral intramuscular injection of dexamethasone (0.35 mg·kg-1). After successful modeling, the rats were randomized into model, methimazole (positive control, 5 mg·kg-1), low-, medium-, and high-dose (1.85, 3.70, 7.40 g·kg-1, respectively) ZGW, and normal control groups. After 21 days of continuous gavage, the behavioral indexes and body weight changes of rats were evaluated. The pathological changes of the renal tissue were observed by hematoxylin-eosin staining. The serum levels of thyroid hormones [triiodothyronine (T3), thyroxine (T4), thyroid-stimulating hormone (TSH)], renal function indexes [serum creatine (Scr) and blood urea nitrogen (BUN)], energy metabolism markers [cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP)], and oxidative stress-related factors [superoxide dismutase (SOD), malondialdehyde (MDA), and NADPH)] were measured by enzyme-linked immunosorbent assay (ELISA). Western blot was employed to analyze the expression of DRD4, NOX4, mitochondrial respiratory chain complex proteins [NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) and cytochrome C oxidase subunit 4 (COX4)], and inflammation-related protein [tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), p38 mitogen-activated protein kinase (MAPK)] pathway in the renal tissue. ResultsCompared with the normal group, the model group showed mental malaise, body weight decreases (P<0.01), inflammatory cell infiltration in the renal tissue, a few residual parotid glands in the thyroid, elevations in serum levels of T3, T4, Scr, BUN, cAMP, cAMP/cGMP, MDA, and NADPH (P<0.01), down-regulation in protein levels of TSH, SOD, and DRD4 (P<0.05, P<0.01), and up-regulation in expression of NOX4, p-p38 MAPK/p38 MAPK, and inflammatory factors (P<0.01). Compared with the model group, ZGW increased the body weight (P<0.05, P<0.01), reduced the infiltration of renal interstitial inflammatory cells, restored the thyroid structure and follicle size, lowered the serum levels of T3, T4, Scr, BUN, cAMP, cAMP/cGMP, MDA and NADPH (P<0.05, P<0.01), up-regulated the expression of TSH, SOD and DRD4 (P<0.05, P<0.01), and down-regulated the expression of NOX4, p-p38 MAPK/p38 MAPK, and inflammatory factors (P<0.05, P<0.01). Moreover, high-dose ZGW outperformed methimazole (P<0.05). ConclusionBy activating DRD4, ZGW can inhibit the expression of NOX4 mediated by the p38 MAPK pathway, reduce oxidative stress and inflammatory response, thereby ameliorating the pathological state of hyperthyroidism due to kidney-Yin deficiency. This study provides new molecular mechanism support for the clinical application of ZGW.
2.Research progress on energy metabolism regulation in stored platelets
Chengyan GAO ; Can LOU ; Hang LEI ; Xiaohong CAI
Chinese Journal of Blood Transfusion 2025;38(1):130-135
In maintaining normal function and activation processes, glycolysis, lipid metabolism, and amino acid metabolism play key roles in the energy demand of platelets. In the resting state, platelets primarily rely on glycolysis and aerobic oxidation to generate energy. Upon activation, platelets preferentially utilize glycolysis, as it can more rapidly provide the required ATP. In addition to glycolysis, platelets can also utilize glycogen and fatty acids as additional energy sources. The ATP provided by fatty acid oxidation is crucial for platelet activation. Additionally, during platelet storage, distinctive changes in energy metabolism occur. In the early stages of storage, platelets primarily rely on glycolysis and the pentose phosphate pathway (PPP) to generate energy. In the mid-storage phase, there is an increase in tricarboxylic acid cycle (TCA) metabolism. In the later stages of storage, cellular metabolism gradually declines. The regulation and flexibility of these metabolic pathways play a critical role in the survival and function of platelets in different states.
3.Analysis of phacoemulsification parameters and anterior segment parameters in cataract patients with different blood glucose levels
Xinqi XU ; Ping WANG ; Tong LIU ; Lei WANG ; Xuansheng ZHU ; Huiwen ZHANG ; Lei SHI ; Wen GAO
International Eye Science 2025;25(6):875-885
AIM:To analyze the characteristics and correlation of phacoemulsification parameters and anterior segment parameters in cataract patients with different blood glucose levels.METHODS:A total of 45 type 2 diabetic cataract patients(45 eyes)treated in our hospital from March 2023 to April 2024 were stratified into two groups based on glycosylated hemoglobin(HbA1c)levels: group A: HbA1c <7%(n=18)and group B: 7%≤HbA1c<8.5%(n=27); a total of 94 age-matched age-related cataract patients(94 eyes)were enrolled as the control group(group C). All underwent phacoemulsification with intraocular lens implantation. Anterior segment parameters, including corneal, lens and anterior chamber measurements, were recorded. Correlations between phacoemulsification parameters and anterior segment parameters were analyzed, and differences among groups were compared.RESULTS: In groups A and B, effective phacoemulsification time(EPT)negatively correlated with corneal endothelial cell density(CECD)(r=-0.315, P=0.035). Average phacoemulsification time(APT)positively correlated with the anterior corneal surface radius of curvature(Rm; r=0.402, P=0.006)and negatively correlated with the flat axis meridian curvature(K1), steep axis meridian curvature(K2), mean curvature(Km)of the anterior corneal surface, and lens density at 6 mm zones(PDZ3; all P<0.05). Average phacoemulsification energy(AVE)positively correlated with mean lens density(LD-mean), lens density at 2 mm zones(PDZ1), lens density at 4 mm zones(PDZ2), and PDZ3(all P<0.05), and negatively with pupil diameter(r=-0.385, P=0.009). In the group C, EPT showed a positive correlation with Pentacam nucleus staging(PNS)density grade, PDZ1, PDZ2, and PDZ3(all P<0.05). A positive correlation was observed between AVE and PNS classification(r=0.246, P=0.018). Conversely, AVE exhibited a negative correlation with CECD(r=-0.245, P=0.018). EPT in groups A and B was higher than that in the group C(P<0.05). Both EPT and APT in the group B were higher than those in the group A(P<0.05). In diabetic cataract patients, CECD, corneal density(CD), and posterior corneal surface height positively correlated with diabetes duration(P<0.05). Posterior corneal surface K1 and Rm positively correlated with 7%≤HbA1c<8.5%(P<0.05). Total corneal astigmatism negatively correlated with HbA1c, 2-hour post-breakfast blood glucose(2hPBG), and fasting insulin(FINS; P<0.05). CD and lens thickness(LT)positively correlated with FINS(P<0.05).CONCLUSION: Phacoemulsification parameters and blood glucose-related indices exhibited varying degrees of correlation with anterior segment parameters in cataract patients with different blood glucose levels. EPT in diabetic cataract patients was higher than that in age-related cataract patients, while EPT and APT in diabetic cataract patients with poor glycemic control were higher than those with good glycemic control.
4.Identification of terpenoid synthases family in Perilla frutescens and functional analysis of germacrene D synthase.
Pei-Na ZHOU ; Zai-Biao ZHU ; Lei XIONG ; Ying ZHANG ; Peng CHEN ; Huang-Jin TONG ; Cheng-Hao FEI
China Journal of Chinese Materia Medica 2025;50(10):2658-2673
Based on whole-genome identification of the TPS gene family in Perilla frutescens and screening, cloning, bioinformatics, and expression analysis of the synthetic enzyme for the insect-resistant component germacrene D, this study lays the foundation for understanding the biological function of the TPS gene family and the insect resistance mechanism in P. frutescens. This study used bioinformatics tools to identify the TPS gene family of P. frutescens based on its whole genome and predicted the physicochemical properties, systematic classification, and promoter cis-elements of the proteins. The relative content of germacrene D was detected in both normal and insect-infested leaves of P. frutescens, and the germacrene D synthase was screened and isolated. Gene cloning, bioinformatics analysis, and expression profiling were then performed. The results showed that a total of 99 TPS genes were identified in the genome, which were classified into the TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g subfamilies. Conserved motif analysis showed that the TPS in P. frutescens has conserved structural characteristics within the same subfamily. Promoter cis-element analysis predicted the presence of light-responsive elements, multiple hormone-responsive elements, and stress-responsive elements in the TPS family of P. frutescens. Transcriptome data revealed that most of the TPS genes in P. frutescens were highly expressed in the leaves. GC-MS analysis showed that the relative content of germacrene D significantly increased in insect-damaged leaves, suggesting that it may act as an insect-resistant component. The germacrene D synthase gene was screened through homologous protein binding gene expression and was found to belong to the TPS-a subfamily, encoding a 64.89 kDa protein. This protein was hydrophilic, lacked a transmembrane structure and signal peptide, and was predominantly expressed in leaves, with significantly higher expression in insect-damaged leaves compared to normal leaves. In vitro expression results showed that germacrene D synthase tended to form inclusion bodies. Molecular docking showed that farnesyl pyrophosphate(FPP) fell into the active pocket of the protein and interacted strongly with six active sites. This study provides a foundation for further research on the biological functions of the TPS gene family in P. frutescens and the molecular mechanisms underlying its insect resistance.
Perilla frutescens/chemistry*
;
Plant Proteins/chemistry*
;
Multigene Family
;
Sesquiterpenes, Germacrane/metabolism*
;
Alkyl and Aryl Transferases/chemistry*
;
Phylogeny
;
Gene Expression Regulation, Plant
5.Exploration of pharmacodynamic material basis and mechanism of Jinbei Oral Liquid against idiopathic pulmonary fibrosis based on UHPLC-Q-TOF-MS/MS and network pharmacology.
Jin-Chun LEI ; Si-Tong ZHANG ; Xian-Run HU ; Wen-Kang LIU ; Xue-Mei CHENG ; Xiao-Jun WU ; Wan-Sheng CHEN ; Man-Lin LI ; Chang-Hong WANG
China Journal of Chinese Materia Medica 2025;50(10):2825-2840
This study aims to explore the pharmacodynamic material basis of Jinbei Oral Liquid(JBOL) against idiopathic pulmonary fibrosis(IPF) based on serum pharmacochemistry and network pharmacology. The ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technology was employed to analyze and identify the components absorbed into rat blood after oral administration of JBOL. Combined with network pharmacology, the study explored the pharmacodynamic material basis and potential mechanism of JBOL against IPF through protein-protein interaction(PPI) network construction, "component-target-pathway" analysis, Gene Ontology(GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. First, a total of 114 compounds were rapidly identified in JBOL extract according to the exact relative molecular mass, fragment ions, and other information of the compounds with the use of reference substances and a self-built compound database. Second, on this basis, 70 prototype components in blood were recognized by comparing blank serum with drug-containing serum samples, including 28 flavonoids, 25 organic acids, 4 saponins, 4 alkaloids, and 9 others. Finally, using these components absorbed into blood as candidates, the study obtained 212 potential targets of JBOL against IPF. The anti-IPF mechanism might involve the action of active ingredients such as glycyrrhetinic acid, cryptotanshinone, salvianolic acid B, and forsythoside A on core targets like AKT1, TNF, and ALB and thereby the regulation of multiple signaling pathways including PI3K/AKT, HIF-1, and TNF. In conclusion, JBOL exerts the anti-IPF effect through multiple components, targets, and pathways. The results would provide a reference for further study on pharmacodynamic material basis and pharmacological mechanism of JBOL.
Drugs, Chinese Herbal/pharmacokinetics*
;
Animals
;
Tandem Mass Spectrometry
;
Network Pharmacology
;
Rats
;
Chromatography, High Pressure Liquid
;
Rats, Sprague-Dawley
;
Male
;
Idiopathic Pulmonary Fibrosis/metabolism*
;
Humans
;
Administration, Oral
;
Protein Interaction Maps/drug effects*
;
Signal Transduction/drug effects*
6.Research on the molecular mechanisms of ABO subtypes based on first-generation and third-generation sequencing technologies
Chengyan GAO ; Hui ZHANG ; Hang LEI ; Can LOU ; Xiaohong CAI
Chinese Journal of Blood Transfusion 2025;38(7):928-933
Objective: To accurately determine the ABO blood group of samples exhibiting forward/reverse grouping discrepancies by combining first-generation (Sanger) and third-generation (long-read) sequencing technologies. Methods: Five samples with ABO forward/reverse grouping discrepancies were selected. Serological testing was conducted using automated blood typing instruments and the tube method. Genotyping was conducted using both Sanger and long-read sequencing technologies. Results: Sanger sequencing identified specific genetic mutations in two samples, with genotypes of ABO
BA. 04/ABO
O.01.01 and ABO
B3.05/ABO
O.01.02. Further analysis with long-read sequencing revealed specific mutations in the +5.8kb region of intron 1 (c.28+5885C>T and c.28+5861T>G) in three samples where mutations were not detected by Sanger sequencing. These mutations affect the expression of the ABO antigens and are likely responsible for the ABO subgroup phenotypes. Conclusion: The integration of Sanger and long-read sequencing technologies effectively identifies genetic variations causing ABO subtypes, providing a scientific basis for enhancing clinical transfusion safety and ensuring accurate blood group determination.
7.Advances in immunoPET/SPECT imaging: The role of Fab and F(ab')2 fragments in theranostics.
Wenpeng HUANG ; Jingwei ZHOU ; Yanchen LIU ; Yihan YANG ; Rachel J SALADIN ; Jessica C HSU ; Weibo CAI ; Lei KANG
Acta Pharmaceutica Sinica B 2025;15(8):3888-3924
With the advent of precision medicine and personalized treatment, targeted therapies have become pivotal in oncology. Noninvasive molecular imaging, especially immunoPET/SPECT, plays a crucial role in refining cancer diagnostics and treatment monitoring by visualizing biological processes at the molecular level. This review explores the dynamic field of immunoPET/SPECT imaging using Fab and F(ab')2 fragments, characterized by advantageous pharmacokinetics and swift clearance from the bloodstream, making them suitable for same-day imaging procedures. We examine contemporary strategies for radiolabeling these fragments with PET and SPECT radionuclides and discuss potential advancements and the challenges anticipated in the further development of Fab and F(ab')2 fragments. Despite the complexities involved in their development, these fragments hold significant promise for advanceing personalized cancer treatment. Keys to this advancement are innovative radiolabeling techniques, site-specific conjugation chemistries, and short-lived radionuclides, all of which are crucial for overcoming existing limitations and enhancing the clinical utility of these imaging agents. As research progresses, Fab and F(ab')2 fragments are expected to become central to the future of cancer diagnostics and therapeutic monitoring, thereby improving patient management and contributing significantly to the evolution of personalized medicine.
8.Palmitoylated SARM1 targeting P4HA1 promotes collagen deposition and myocardial fibrosis: A new target for anti-myocardial fibrosis.
Xuewen YANG ; Yanwei ZHANG ; Xiaoping LENG ; Yanying WANG ; Manyu GONG ; Dongping LIU ; Haodong LI ; Zhiyuan DU ; Zhuo WANG ; Lina XUAN ; Ting ZHANG ; Han SUN ; Xiyang ZHANG ; Jie LIU ; Tong LIU ; Tiantian GONG ; Zhengyang LI ; Shengqi LIANG ; Lihua SUN ; Lei JIAO ; Baofeng YANG ; Ying ZHANG
Acta Pharmaceutica Sinica B 2025;15(9):4789-4806
Myocardial fibrosis is a serious cause of heart failure and even sudden cardiac death. However, the mechanisms underlying myocardial ischemia-induced cardiac fibrosis remain unclear. Here, we identified that the expression of sterile alpha and TIR motif containing 1 (SARM1), was increased significantly in the ischemic cardiomyopathy patients, dilated cardiomyopathy patients (GSE116250) and fibrotic heart tissues of mice. Additionally, inhibition or knockdown of SARM1 can improve myocardial fibrosis and cardiac function of myocardial infarction (MI) mice. Moreover, SARM1 fibroblasts-specific knock-in mice had increased deposition of extracellular matrix and impaired cardiac function. Mechanically, elevated expression of SARM1 promotes the deposition of extracellular matrix by directly modulating P4HA1. Notably, by using the Click-iT reaction, we identified that the increased expression of ZDHHC17 promotes the palmitoylation levels of SARM1, thereby accelerating the fibrosis process. Based on the fibrosis-promoting effect of SARM1, we screened several drugs with anti-myocardial fibrosis activity. In conclusion, we have unveiled that palmitoylated SARM1 targeting P4HA1 promotes collagen deposition and myocardial fibrosis. Inhibition of SARM1 is a potential strategy for the treatment of myocardial fibrosis. The sites where SARM1 interacts with P4HA1 and the palmitoylation modification sites of SARM1 may be the active targets for anti-fibrosis drugs.
9.The Mechanism of Exercise Regulating Intestinal Flora in The Prevention and Treatment of Depression
Lei-Zi MIN ; Jing-Tong WANG ; Qing-Yuan WANG ; Yi-Cong CUI ; Rui WANG ; Xin-Dong MA
Progress in Biochemistry and Biophysics 2025;52(6):1418-1434
Depression, a prevalent mental disorder with significant socioeconomic burdens, underscores the urgent need for safe and effective non-pharmacological interventions. Recent advances in microbiome research have revealed the pivotal role of gut microbiota dysbiosis in the pathogenesis of depression. Concurrently, exercise, as a cost-effective and accessible intervention, has demonstrated remarkable efficacy in alleviating depressive symptoms. This comprehensive review synthesizes current evidence on the interplay among exercise, gut microbiota modulation, and depression, elucidating the mechanistic pathways through which exercise ameliorates depressive symptoms via the microbiota-gut-brain (MGB) axis. Depression is characterized by gut microbiota alterations, including reduced alpha and beta diversity, depletion of beneficial taxa (e.g., Bifidobacterium, Lactobacillus, and Coprococcus), and overgrowth of pro-inflammatory and pathogenic bacteria (e.g., Morganella, Klebsiella, and Enterobacteriaceae). Metagenomic analyses reveal disrupted metabolic functions in depressive patients, such as diminished synthesis of short-chain fatty acids (SCFAs), impaired tryptophan metabolism, and dysregulated bile acid conversion. For instance, Bifidobacterium longum deficiency correlates with reduced synthesis of neuroactive metabolites like homovanillic acid, while decreased Coprococcus abundance limits butyrate production, exacerbating neuroinflammation. Furthermore, elevated levels of indole derivatives from Clostridium species inhibit serotonin (5-HT) synthesis, contributing to depressive phenotypes. These dysbiotic profiles disrupt the MGB axis, triggering systemic inflammation, neurotransmitter imbalances, and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. Exercise exerts profound effects on gut microbiota composition, diversity, and metabolic activity. Longitudinal studies demonstrate that sustained aerobic exercise increases alpha diversity, enriches SCFA-producing genera (e.g., Faecalibacterium prausnitzii, Roseburia, and Akkermansia), and suppresses pathobionts (e.g., Desulfovibrio and Streptococcus). For example, a meta-analysis of 25 trials involving 1 044 participants confirmed that exercise enhances microbial richness and restores the Firmicutes/Bacteroidetes ratio, a biomarker of metabolic health. Notably, endurance training promotes Veillonella proliferation, which converts lactate into propionate, enhancing energy metabolism and delaying fatigue. Exercise also strengthens intestinal barrier integrity by upregulating tight junction proteins (e.g., ZO-1, occludin), thereby reducing lipopolysaccharide (LPS) translocation and systemic inflammation. However, excessive exercise may paradoxically diminish microbial diversity and exacerbate intestinal permeability, highlighting the importance of moderate intensity and duration. Exercise ameliorates depressive symptoms through multifaceted interactions with the gut microbiota, primarily via 4 interconnected pathways. First, exercise mitigates neuroinflammation by elevating anti-inflammatory SCFAs such as butyrate, which suppresses NF-κB signaling to attenuate microglial activation and oxidative stress in the hippocampus. Animal studies demonstrate that voluntary wheel running reduces hippocampal TNF‑α and IL-17 levels in stress-induced depression models, while fecal microbiota transplantation (FMT) from exercised mice reverses depressive behaviors by modulating the TLR4/NF‑κB pathway. Second, exercise regulates neurotransmitter dynamics by enriching GABA-producing Lactobacillus and Bifidobacterium, thereby counteracting neuronal hyperexcitability. Aerobic exercise also enhances the abundance of Lactobacillus plantarum and Streptococcus thermophilus, which facilitate 5-HT and dopamine synthesis. Clinical trials reveal that 12 weeks of moderate exercise increases fecal Coprococcus and Blautia abundance, correlating with improved 5-HT bioavailability and reduced depression scores. Third, exercise normalizes HPA axis hyperactivity by reducing cortisol levels and restoring glucocorticoid receptor sensitivity. In rodent models, chronic stress-induced corticosterone elevation is reversed by probiotic supplementation (e.g., Lactobacillus), which enhances endocannabinoid signaling and hippocampal neurogenesis. Furthermore, exercise upregulates brain-derived neurotrophic factor (BDNF) via microbial metabolites like butyrate, promoting histone acetylation and synaptic plasticity. FMT experiments confirm that exercise-induced microbiota elevates prefrontal BDNF expression, reversing stress-induced neuronal atrophy. Fourth, exercise reshapes microbial metabolic crosstalk, diverting tryptophan metabolism toward 5-HT synthesis instead of neurotoxic kynurenine derivatives. Butyrate inhibits indoleamine 2,3-dioxygenase (IDO), a key enzyme in the kynurenine pathway linked to depression. Concurrently, exercise-induced Akkermansia enrichment enhances mucin production, fortifies the gut barrier, and reduces LPS-driven neuroinflammation. Collectively, these mechanisms underscore exercise as a potent modulator of the microbiota-gut-brain axis, offering a holistic approach to alleviating depression through microbial and neurophysiological synergy. Current evidence supports exercise as a potent adjunct therapy for depression, with personalized regimens (e.g., aerobic, resistance, or yoga) tailored to individual microbiota profiles. However, challenges remain in optimizing exercise prescriptions (intensity, duration, and type) and integrating them with probiotics, prebiotics, or FMT for synergistic effects. Future research should prioritize large-scale randomized controlled trials to validate causality, multi-omics approaches to decipher MGB axis dynamics, and mechanistic studies exploring microbial metabolites as therapeutic targets. The authors advocate for a paradigm shift toward microbiota-centric interventions, emphasizing the bidirectional relationship between physical activity and gut ecosystem resilience in mental health management. In conclusion, this review underscores exercise as a multifaceted modulator of the gut-brain axis, offering novel insights into non-pharmacological strategies for depression. By bridging microbial ecology, neuroimmunology, and exercise physiology, this work lays a foundation for precision medicine approaches targeting the gut microbiota to alleviate depressive disorders.
10.Research on the molecular mechanisms of ABO subtypes based on first-generation and third-generation sequencing technologies
Chengyan GAO ; Hui ZHANG ; Hang LEI ; Can LOU ; Xiaohong CAI
Chinese Journal of Blood Transfusion 2025;38(7):928-933
Objective: To accurately determine the ABO blood group of samples exhibiting forward/reverse grouping discrepancies by combining first-generation (Sanger) and third-generation (long-read) sequencing technologies. Methods: Five samples with ABO forward/reverse grouping discrepancies were selected. Serological testing was conducted using automated blood typing instruments and the tube method. Genotyping was conducted using both Sanger and long-read sequencing technologies. Results: Sanger sequencing identified specific genetic mutations in two samples, with genotypes of ABO
BA. 04/ABO
O.01.01 and ABO
B3.05/ABO
O.01.02. Further analysis with long-read sequencing revealed specific mutations in the +5.8kb region of intron 1 (c.28+5885C>T and c.28+5861T>G) in three samples where mutations were not detected by Sanger sequencing. These mutations affect the expression of the ABO antigens and are likely responsible for the ABO subgroup phenotypes. Conclusion: The integration of Sanger and long-read sequencing technologies effectively identifies genetic variations causing ABO subtypes, providing a scientific basis for enhancing clinical transfusion safety and ensuring accurate blood group determination.

Result Analysis
Print
Save
E-mail