1.Effect of ursolic acid on osteogenic differentiation of human periodontal ligament stem cells
Qian ZHENG ; Pingping LIU ; Yujie GU ; Lei XIE
Chinese Journal of Tissue Engineering Research 2025;29(1):80-86
BACKGROUND:Ursolic acid can promote the directed differentiation of bone marrow mesenchymal stem cells into osteoblasts.However,there are few reports on whether ursolic acid has osteogenic effect on human periodontal ligament stem cells. OBJECTIVE:To investigate the effect of ursolic acid on proliferation and osteogenic differentiation of human periodontal ligament stem cells. METHODS:The human periodontal ligament stem cells were isolated and cultured.Passage 3 cells were selected and treated with ordinary medium containing different concentrations(0,1,2,4,6,8 μmol/L)of ursolic acid.After intervention for 1,3,5,7 days,the cell proliferation was detected by CCK-8 assay and the appropriate intervention concentration was screened.Passage 3 human periodontal ligament stem cells were treated with osteogenic induction solution containing 0,1,2,4 μmol/L ursolic acid,respectively.After 7 days of intervention,the mRNA expressions of alkaline phosphatase,Runx2,and osteocalcin were detected by qRT-PCR.After 14 days of intervention,the formation of mineralized nodules was observed by alizarin red staining.Passage 3 human periodontal ligament stem cells were taken and the control group was added with osteogenic induction solution;the ursolic acid group and the antagonist group were added with osteogenic induction solution containing ursolic acid(2 μmol/L)and the bone morphogenetic protein signaling pathway antagonist Noggin,respectively.The ursolic acid+antagonist group was added with osteogenic induction solution containing ursolic acid(2 μmol/L)and Noggin,the inhibitor of bone morphogenetic protein signaling pathway,and cultured for 7 days.qRT-PCR and western blot assay were used to detect the mRNA and protein expressions of bone morphogenetic protein 2,Smad1,osteopontin,and Runx2. RESULTS AND CONCLUSION:(1)1,2,4 μmol/L ursolic acid could promote the proliferation of human periodontal ligament stem cells.6,8 μmol/L ursolic acid could inhibit the proliferation of human periodontal ligament stem cells,and 1,2,4 μmol/L ursolic acid was selected to intervene in subsequent experiments.(2)Compared with 0 μmol/L,1,2,4 μmol/L ursolic acid could promote the expression of alkaline phosphatase,Runx2,and osteocalcin mRNA and the formation of mineralized nodules(P<0.05),and the effect of 2 μmol/L ursolic acid was the most significant.(3)Compared with the control group,the mRNA and protein expressions of bone morphogenetic protein 2,Smad1,osteopontin,and Runx2 in the ursolic acid group were increased(P<0.05),while mRNA and protein expressions of the above indexes were decreased in the antagonist group(P<0.05).Compared with the ursolic acid group,mRNA and protein expressions of above indexes were decreased in ursolic acid+antagonist group(P<0.05).(4)The results indicate that ursolic acid promotes osteogenic differentiation of human periodontal ligament stem cells through bone morphogenetic protein signaling pathway.
2.Construction and Verification of An Integrated Traditional Chinese and Western Medicine Model for Predicting Malignant Risk of Pulmonary Nodules
Qian YANG ; Jingmin XIAO ; Yuanbing CHEN ; Lei WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):129-139
ObjectiveThis study explored the risk factors for malignant risks of pulmonary nodules based on clinical data,constructed an integrated traditional Chinese and Western medicine model for predicting malignant risks of pulmonary nodules, and visualized the prediction results by using a nomogram. MethodsBased on a cross-sectional survey study design,patients with pulmonary nodules who were hospitalized in the Department of Respiratory and Cardiothoracic Surgery of Guangdong Provincial Hospital of Traditional Chinese Medicine from April 2023 to January 2024 were included. The dataset was randomly divided into a training set and a validation set according to 7∶3. In the training set,predictive factors were selected through univariate Logistic regression analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis,and Logistic regression models were built. The discriminative ability,calibration,and clinical decision-making curves of the Western medicine model and the integrated traditional Chinese and Western medicine prediction model were compared to select the optimal model,which was then visualized in a nomogram. ResultsThis study included a total of 366 patients,and they were divided into a training set (258 cases) and a validation set (108 cases). Seven predictive factors were considered including age,preference for fatty and greasy foods,history of environmental or occupational exposure,Qi deficiency,Yang deficiency,nodule density,and nodule diameter. A Logistic regression model was constructed. A Western medicine model,defined as model1,was created using only age,history of environmental or occupational exposure,nodule density,and nodule diameter as predictive factors. In addition,an integrated traditional Chinese and Western medicine model,defined as model2,was created by adding preference for fatty and greasy foods, Qi deficiency,and Yang deficiency as predictive factors. Model2 demonstrated better predictive performance in both the training and validation sets. Its accuracy in training set was 0.740,with precision of 0.825, recall of 0.829, F1 score of 0.827, the area under the curve (AUC)of 0.865 (95% confidence interval (CI):0.815-0.915), and a Brier score of 0.122. The accuracy in validation set was 0.731, with precision of 0.776, recall of 0.831, F1 score of 0.803, AUC of 0.852 (95%CI:0.776-0.927), and a Brier score of 0.149. The calibration curve and decision-making curve analysis showed that this model exhibited good consistency and clinical utility in prediction. The equation for the malignant probability of pulmonary nodules was defined as p=
3.Diagnosis and treatment of 281 elderly patients with pulmonary ground-glass opacity: A retrospective study in a single center
Lei SU ; Yi ZHANG ; Yan GAO ; Bing WEI ; Tengteng WANG ; Yuanbo LI ; Kun QIAN ; Peilong ZHANG ; Leiming WANG ; Xiuqin WEI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):94-99
Objective To explore the diagnosis and treatment strategies for elderly patients with ground-glass opacity (GGO). Methods The imaging features and postoperative pathological findings of the elderly patients with pulmonary GGO receiving surgery in our hospital from 2017 to 2019 were retrospectively analyzed. The patients were divided into an elderly patient group and a non-elderly patient group based on their age. Results Finally 575 patients were included in the study. There were 281 elderly patients, including 83 males and 198 females, with an average age of (67.0±5.3) years. There were 294 non-elderly patients, including 88 males and 206 females, with an average age of (49.1±7.3) years. Compared with the non-elderly patients, elderly GGO patients showed the following distinct clinical features: long observation time for lesions (P=0.001), high proportion of rough edges of GGO (P<0.001), significant pleural signs (P<0.001) and bronchial signs (P<0.001), and high proportion of type Ⅱ-Ⅳ GGO (P<0.001), lobectomy type (P=0.013), and invasive lesions reported in postoperative pathology (P<0.001). There was no statistical difference in the average hospital stay between the two groups (P=0.106). Multivariate logistic regression analysis showed that GGO diameter and GGO type were the main factors affecting the operation. Observation time, GGO diameter, GGO type and pleural signs were the main influencing factors for postoperative pathological infiltrative lesions. The cut-off value of GGO diameter in predicting infiltrating lesions was 10.5 mm in the elderly patients group. Conclusion The size and type of GGO are important factors in predicting invasive lesions and selecting surgical methods. Elderly patients with radiographic manifestations of type Ⅱ-Ⅳ GGO lesions with a diameter greater than 10.5 mm should be closely followed up.
4.Emergency medical response strategy for the 2025 Dingri, Tibet Earthquake
Chenggong HU ; Xiaoyang DONG ; Hai HU ; Hui YAN ; Yaowen JIANG ; Qian HE ; Chang ZOU ; Si ZHANG ; Wei DONG ; Yan LIU ; Huanhuan ZHONG ; Ji DE ; Duoji MIMA ; Jin YANG ; Qiongda DAWA ; Lü ; JI ; La ZHA ; Qiongda JIBA ; Lunxu LIU ; Lei CHEN ; Dong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(04):421-426
This paper systematically summarizes the practical experience of the 2025 Dingri earthquake emergency medical rescue in Tibet. It analyzes the requirements for earthquake medical rescue under conditions of high-altitude hypoxia, low temperature, and low air pressure. The paper provides a detailed discussion on the strategic layout of earthquake medical rescue at the national level, local government level, and through social participation. It covers the construction of rescue organizational systems, technical systems, material support systems, and information systems. The importance of building rescue teams is emphasized. In high-altitude and cold conditions, rapid response, scientific decision-making, and multi-party collaboration are identified as key elements to enhance rescue efficiency. By optimizing rescue organizational structures, strengthening the development of new equipment, and promoting telemedicine technologies, the precision and effectiveness of medical rescue can be significantly improved, providing important references for future similar disaster rescues.
5.Hypoxia Exercise Mediates The miR-27/PPARγ Pathway to Improve Lipid Metabolism in Obese Rats at Target Genes and Protein Levels
Wei KONG ; Jie SHAO ; Teng ZHAI ; Qian CHENG ; Fang-Zheng HAN ; Yi QU ; Lei ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1386-1400
ObjectiveTo explore the sequential effects of hypoxic exercising on miR-27/PPARγ and lipid metabolism target gene and protein expression levels in the obesity rats’ liver. Methods13-week-old male diet-induced obesity rats were randomly divided into three groups (n=10): normal oxygen concentration quiet group (N), hypoxia quiet group (H), hypoxic exercise group (HE). Exercise training on the horizontal animal treadmill for 1 h/d, 5 d/week for a total of 4 week, and the intensity of horizontal treadmill training was 20 m/min (hypoxic concentration was 13.6%). Comparison of the weights of perirenal fat and epididymal fat in rats across different groups and calculation of Lee’s index based on body weight and body length of rats in each group were done. And the serum concentrations of total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) levels were detected. RT-PCR and Western Blot were used to detect the levels of miR-27, PPARγ, CYP7A1 and CD36. ResultsHypoxic exercise decreased the expression levels of miR-27 in the obese rats’ liver, however, the expression level of PPARγ was gradually increased. The expression levels of miR-27 in HE group were significantly lower than N group (P<0.05). The expression levels of PPARγ mRNA in N group were significantly lower than H group (P<0.05), especially lower than HE group (P<0.01). The protein expression of PPARγ protein in N group was significantly lower than that other groups (P<0.01). The expression of lipid metabolism-related genes and proteins increased in the obese rats’ liver. The expression of CYP7A1 mRNA in N group was significantly lower than H group (P<0.05), especially lower than HE group (P<0.01). The expression of CYP7A1 protein in the obese rats’ liver in N group was extremely lower than H group and HE group (P<0.01). The protein expression of CD36 in N group was significantly lower than that in HE group (P<0.05). Hypoxia exercise improved the related physiological and biochemical indexes of lipid metabolism disorder. The perirenal fat weight of obese rats in HE group was extremely lower than N group and H group (P<0.01), and the perirenal fat weight in N group was significantly higher than H group (P<0.05). The epididymal fat weight in N group was significantly higher than H group (P<0.05), and extremely higher than HE group (P<0.01). The Lee’s index in HE group was extremely lower than N group and H group (P<0.01). The serum concentration of TC in obese rats in HE group was extremely lower than N group and H group (P<0.01). The serum concentration of TG in HE group was extremely lower than N group and H group (P<0.01). The serum concentration of LDL-C in N group was extremely higher than HE group (P<0.01). The serum concentration of HDL-C in N group was extremely lower than H group (P<0.01). ConclusionHypoxia and hypoxia exercise may negatively regulate the levels of PPARγ by inhibiting miR-27 in the obese rats’ liver, thereby affecting the expression of downstream target genes CYP7A1 and CD36, and promoting cholesterol, fatty acid oxidation and HDL-C transport in the liver, and ultimately the lipid levels in obese rats were improved. The effect of hypoxia exercise on improving blood lipid is better than simple hypoxia intervention.
6.Study on the correlation between hyperopia reserve and ocular biometric parameters after ciliary muscle paralysis in 4-14 year-old students from Hotan County, Xinjiang
Ning LI ; Yan WANG ; Lei YANG ; Qian PU ; AYINU·NULAHOU ; Xiaolong LI ; Yong ZHAO ; Yunxian GAO
International Eye Science 2025;25(8):1371-1376
AIM: To explore the relationship between hyperopia reserve and ocular biometric parameters in 4-14 year-old Uyghur students from Hotan County, Xinjiang, and to provide scientific evidence for myopia prevention.METHODS: From September 1 to October 31, 2023, a stratified random cluster sampling method was used to select 3 264 students(3 264 eyes)from 6 schools in Hotan County. Participants underwent uncorrected distance visual acuity testing, cycloplegic refraction, and ocular biometric measurements. The correlation between spherical equivalent(SE)and ocular biometric parameters was analyzed by multiple linear regression.RESULTS: A total of 1 998 non-myopic students(1 998 eyes)were included in the study, with 1 354 students(67.77%)showing insufficient hyperopia reserve. The detection rate of insufficient hyperopia reserve decreased with age, from 94.12% at age 4 to 18.13% at age 14(P<0.001). Multiple linear regression analysis showed that in the group with sufficient hyperopia reserve, age, gender, uncorrected distance visual acuity, axial length(AL), and keratometry(K)explained 66.5% of the variance in SE; while in the group with insufficient hyperopia reserve, these factors explained only 28.0% of the SE variance.CONCLUSION: In non-myopic Uyghur students aged 4-14 in Hotan County, Xinjiang, the detection rate of insufficient hyperopia reserve was 67.77%. In the group with insufficient hyperopia reserve, age, gender, AL, and K explained only a small portion of the SE variance, suggesting that the refractive status of this population may be influenced by more complex factors.
7.The Application of Spatial Resolved Metabolomics in Neurodegenerative Diseases
Lu-Tao XU ; Qian LI ; Shu-Lei HAN ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2025;52(9):2346-2359
The pathogenesis of neurodegenerative diseases (NDDs) is fundamentally linked to complex and profound alterations in metabolic networks within the brain, which exhibit marked spatial heterogeneity. While conventional bulk metabolomics is powerful for detecting global metabolic shifts, it inherently lacks spatial resolution. This methodological limitation hampers the ability to interrogate critical metabolic dysregulation within discrete anatomical brain regions and specific cellular microenvironments, thereby constraining a deeper understanding of the core pathological mechanisms that initiate and drive NDDs. To address this critical gap, spatial metabolomics, with mass spectrometry imaging (MSI) at its core, has emerged as a transformative approach. It uniquely overcomes the limitations of bulk methods by enabling high-resolution, simultaneous detection and precise localization of hundreds to thousands of endogenous molecules—including primary metabolites, complex lipids, neurotransmitters, neuropeptides, and essential metal ions—directly in situ from tissue sections. This powerful capability offers an unprecedented spatial perspective for investigating the intricate and heterogeneous chemical landscape of NDD pathology, opening new avenues for discovery. Accordingly, this review provides a comprehensive overview of the field, beginning with a discussion of the technical features, optimal application scenarios, and current limitations of major MSI platforms. These include the widely adopted matrix-assisted laser desorption/ionization (MALDI)-MSI, the ultra-high-resolution technique of secondary ion mass spectrometry (SIMS)-MSI, and the ambient ionization method of desorption electrospray ionization (DESI)-MSI, along with other emerging technologies. We then highlight the pivotal applications of spatial metabolomics in NDD research, particularly its role in elucidating the profound chemical heterogeneity within distinct pathological microenvironments. These applications include mapping unique molecular signatures around amyloid β‑protein (Aβ) plaques, uncovering the metabolic consequences of neurofibrillary tangles composed of hyperphosphorylated tau protein, and characterizing the lipid and metabolite composition of Lewy bodies. Moreover, we examine how spatial metabolomics contributes to constructing detailed metabolic vulnerability maps across the brain, shedding light on the biochemical factors that render certain neuronal populations and anatomical regions selectively susceptible to degeneration while others remain resilient. Looking beyond current applications, we explore the immense potential of integrating spatial metabolomics with other advanced research methodologies. This includes its combination with three-dimensional brain organoid models to recapitulate disease-relevant metabolic processes, its linkage with multi-organ axis studies to investigate how systemic metabolic health influences neurodegeneration, and its convergence with single-cell and subcellular analyses to achieve unprecedented molecular resolution. In conclusion, this review not only summarizes the current state and critical role of spatial metabolomics in NDD research but also offers a forward-looking perspective on its transformative potential. We envision its continued impact in advancing our fundamental understanding of NDDs and accelerating translation into clinical practice—from the discovery of novel biomarkers for early diagnosis to the development of high-throughput drug screening platforms and the realization of precision medicine for individuals affected by these devastating disorders.
8.Pharmacoeconomic evaluation of penpulimab in first-line treatment of advanced squamous non-small-cell lung cancer
Dongxue HU ; Ying ZHENG ; Qian GAO ; Shiyuan HU ; Danfeng WANG ; Fangzhu YU ; Lei DONG
China Pharmacy 2025;36(11):1364-1369
OBJECTIVE To estimate the cost-effectiveness of penpulimab combined with chemotherapy versus chemotherapy alone in first-line treatment of advanced squamous non-small-cell lung cancer (sq-NSCLC). METHODS From the perspective of Chinese health system, cost-utility analysis was used to evaluate the cost-effectiveness of penpulimab combined with chemotherapy (paclitaxel + carboplatin) versus chemotherapy (paclitaxel + carboplatin) in first-line treatment of sq-NSCLC. A three-health states Markov model was constructed with R packages, and clinical data used in the model were derived from the AK105-302 clinical trial. Costs and utilities were collected from the open-access database and published literature. The quality-adjusted life-years (QALY) was used as the utility index, and the willingness-to-pay (WTP) threshold was set at three times China’s per capita GDP in 2024, equivalent to 287 247 yuan/QALY. The cost-effectiveness of the schemes was evaluated by comparing the incremental cost- utility ratios (ICER) of the two schemes with the WTP threshold. One-way sensitivity analysis and probabilistic sensitivity analysis (PSA) were used to verify the stability of the basic analysis results. RESULTS Compared with chemotherapy, penpulimab combined with chemotherapy increased 0.73 QALY with an incremental cost of 150 681.93 yuan, and the ICER was 206 413.60 yuan/QALY. One-way sensitivity analysis showed that the utility of progression-free survival was the most sensitive factor on ICERs. At the WTP threshold of 3 times China’s per capita GDP, the economic probability of this scheme was 98.80%. At the WTP threshold of 1 times China’s per capita GDP, the probability of ICER being cost-effective was less than 0.01%. CONCLUSIONS For patients with advanced sq-NSCLC, penpulimab combined with chemotherapy is a cost-effective first-line treatment option when WTP threshold is 3 times China’s per capita GDP.
9.Effects of Dendrobium nobile Lindl. alkaloids on behavior and hippocampal tissue damage in manganese-exposed rats
Qian LEI ; Xiaodong YAO ; Yan LI ; Mengheng ZOU ; Zongyang PAN ; Yu CHEN ; Jinping LIU ; Jida LI ; Yuyan CEN
Journal of Environmental and Occupational Medicine 2025;42(5):616-621
Background Manganese is an essential trace element for the human body and maintains normal development of many organs including the brain. However, long-term exposure to a high manganese environment or excessive manganese intake will lead to manganese poisoning and result in neurological diseases, and currently no effective treatment plan is available. Objective To develop an animal model for subchronic manganese exposure and assess the impact of Dendrobium nobile Lindl. alkaloids (DNLA) on manganese associated behavioral and hippocampal effects in rats. Methods Fifty male SPF SD rats were randomly allocated into a control group (0.9% normal saline by intraperitoneal injection), two experimental groups [7.5 mg·kg−1 (low) or 15 mg·kg−1 (high) of MnCl2·4H2O by intraperitoneal injection], and two DNLA antagonistic groups [15 mg·kg−1 MnCl2·4H2O by intraperitoneal injection then either 20 mg·kg−1 (low) or 40 mg·kg−1 (high) DNLA by oral administration]. All groups of rats were adminaistered 5 d per wek, once a day, for consecutive 13 weeks. Following modeling, neurobehavioral assessments were conducted using open field, Morris water maze, and Y maze. Inductively coupled plasma mass spectrometry (ICP-MS) was utilized to measure manganese levels in the blood and brain tissues of the rats, and hematoxylin-eosin (HE) staining was employed to examine neuronal morphological changes in the hippocampal tissues of the rats. Results The neurobehavioral tests revealed that the manganese-exposed rats exhibited decreased total movement distance, prolonged central zone dwelling time, and reduced motor activity in the open field test, indicating tendencies toward depression and anxiety (P<0.05). In the Y-maze test, the mean exploration distance in the novel arm, the number of entries into the novel arm, and the time spent in the novel arm of the managanses-exposed rats were all reduced, while the latency period increased, suggesting impaired spatial exploration and learning-memory functions (P<0.05). In the Morris water maze navigation test, the escape latency was significantly longer in the manganese-exposed rats compared to the control group, and the number of platform crossings decreased in the spatial probe test, indicating a significant decline in spatial learning and memory (P<0.05). The ICP-MS analysis showed elevated manganese concentrations in the blood and hippocampus of the exposed rats (P<0.05), and the histopathological observation revealed hippocampal damage. Following the DNLA intervention, the manganese-exposed rats showed increased total movement distance and reduced central zone dwelling time in the open field test (P<0.05). In the Y-maze test, the mean exploration distance in the novel arm, the number of entries into the novel arm, and the time spent in the novel arm increased, while the latency period decreased, suggesting alleviation of anxiety and improved exploratory behavior (P<0.05). In the Morris water maze test, the escape latency gradually shortened, and both the number of platform crossings and the percentage of time spent in the target quadrant increased, indicating improved spatial learning and memory (P<0.05). Additionally, the manganese levels in the blood and hippocampus decreased (P<0.05), and the hippocampal pathological changes were partially restored. Conclusion DNLA demonstrates the ability to counteract multiple neurotoxic effects following the elevation of manganese levels in the blood and hippocampal tissues of rats induced by subchronic manganese exposure. Specifically, DNLA is shown to ameliorate the behavioral alterations observed in rats after manganese exposure, and mitigate the hippocampal damage in manganese-exposed rats.
10.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.

Result Analysis
Print
Save
E-mail