1.A comprehensive method for determination of 55 traditional and emerging per- and polyfluoroalkyl substances in infant complementary foods using liquid chromatography-high resolution mass spectrometry
Ziwei LIANG ; Chao FENG ; Jiawen YOU ; Zixin QIAN ; Sunyang LE ; Dasheng LU
Journal of Environmental and Occupational Medicine 2025;42(2):211-217
Background Per- and polyfluoroalkyl substances (PFASs) are a class of persistent organic pollutants that pose potential health risks to humans. Infants and young children have higher requirements for food safety due to the underdeveloped detoxification and immune systems. Therefore, developing a comprehensive method for determination of PFASs and their novel alternatives in infant complementary food is of great significance. Objective To develop an analytical method using liquid chromatography high-resolution mass spectrometry technology for determination of 55 PFASs in plant- and animal-derived infant complementary fruit purees. Methods Oasis WAX (200 mg, 6 CC) solid-phase extraction columns were used for sample enrichment and purification. The pH of the acetonitrile extract was adjusted using 0%, 1%, 1.5%, and 2% formic acid aqueous solutions to evaluate its impact on the recovery rate of target compounds. Additionally, the impact of a 2 mL methanol wash during the purification process on the recovery of target compounds was assessed to determine the optimal pretreatment conditions. Three types of chromatographic columns—Agilent Poroshell 120 EC-C18, Thermo InfinityLab Poroshell 120 Aq-C18, Acquity Waters BEH-C18, and changes in mobile phase, were compared for their effects on retention time, peak shape, and response of target compounds. The method was validated in terms of selectivity, linear range, detection limit, and precision. The established method was applied to 49 commercial samples of infant complementary fruit purees. Results Adjusting the sample pH using 1.5% formic acid water and incorporating a 2 mL methanol wash during purification achieved satisfactory recovery rates. The target compounds were chromatographically separated using an Agilent Poroshell 120 EC-C18 column with a gradient elution system. The mobile phase consisted of methanol-water (methanol/water: 2/98, v/v) containing 5 mmol·L−1 ammonium formate as mobile phase A, and methanol as mobile phase B. Good separation was achieved within 15 min, resulting in optimal chromatographic peak shapes. The 55 target compounds exhibited good linearity across the standard curve range, with correlation coefficients (R²) greater than 0.99. The method detection limits ranged from 0.02 to 0.05 µg·L−1. In the plant- and animal-based fruit puree samples, the spiked recovery rates ranged from 60% to 112% and 57% to 119%, respectively, with relative standard deviations (RSD) ≤ 30%. A total of 9 traditional PFASs and 5 novel PFASs were positive in 49 samples of infant complementary fruit purees. Conclusion This method enables comprehensive detection of 55 traditional and emerging PFASs, offering wide coverage, high accuracy, and excellent sensitivity. It provides technical support for characterizing contamination by traditional and emerging PFASs in food matrices.
2.Effects of Cldn14 gene knockout on the formation of calcium oxalate stones in rats and its mechanism
Peiyue LUO ; Liying ZHENG ; Tao CHEN ; Jun ZOU ; Wei LI ; Qi CHEN ; Le CHENG ; Lifeng GAN ; Fangtao ZHANG ; Biao QIAN
Journal of Modern Urology 2025;30(2):168-173
Objective: To explore the effects of Cldn14 gene knockout on renal metabolism and stone formation in rats,so as to provide reference for research in the field of urinary calium metabolism and stone formation. Methods: Cldn14 gene knockout homozygous rats and wild-type rats of the same age were randomly divided into 4 groups:wild-type control (WC) group,wild-type ethylene glycol (WE) group,gene knockout control (KC) group and gene knockout ethylene glycol (KE) group,with 10 rats in each group.The WE and KE groups were induced with ethylene glycol + ammonium chloride to form kidney stones,while the WC and KC groups received normal saline gavage.After 4 weeks of standard maintenance feeding,the urine samples were collected to detect the venous blood.The kidneys were collected for HE,Pizzolatto's staining and transmission electron microscopy.The protein in renal tissues was extracted to detect the expressions of Claudin16 and Claudin19. Results: Crystal deposition was observed in the renal tubular lumen of the WE and the KE groups,and more crystals were detected in the KE group.The WE group had a large number of intracytoplasmic black crystalline inclusions observed in renal tubular epithelial cells under transmission electron microscope,followed by the KE and KC groups.Compared with WC and WE groups,KC and KE groups had significantly decreased serum calcium and magnesium levels but significantly increased urinary calcium level.In addition,the urinary calcium level was higher in the WE group than in the WC group and higher in the KE group than in the KC group.The KE group had lower level of Claudin16,but there was no significant difference in the level of Claudin19 among the 4 groups(P>0.05). Conclusion: Knockout of Cldn14 gene alone cannot effectively reduce urinary calcium excretion or reduce the risk of stone formation in rats,which may be related to the decrease of Claudin16 level.
3.Unveiling the molecular and cellular links between obstructive sleep apnea-hypopnea syndrome and vascular aging.
Wei LIU ; Le ZHANG ; Wenhui LIAO ; Huiguo LIU ; Wukaiyang LIANG ; Jinhua YAN ; Yi HUANG ; Tao JIANG ; Qian WANG ; Cuntai ZHANG
Chinese Medical Journal 2025;138(2):155-171
Vascular aging (VA) is a common etiology of various chronic diseases and represents a major public health concern. Intermittent hypoxia (IH) associated with obstructive sleep apnea-hypopnea syndrome (OSAHS) is a primary pathological and physiological driver of OSAHS-induced systemic complications. A substantial proportion of OSAHS patients, estimated to be between 40% and 80%, have comorbidities such as hypertension, heart failure, coronary artery disease, pulmonary hypertension, atrial fibrillation, aneurysm, and stroke, all of which are closely associated with VA. This review examines the molecular and cellular features common to both OSAHS and VA, highlighting decreased melatonin secretion, impaired autophagy, increased apoptosis, increased inflammation and pyroptosis, increased oxidative stress, accelerated telomere shortening, accelerated stem cell depletion, metabolic disorders, imbalanced protein homeostasis, epigenetic alterations, and dysregulated neurohormonal signaling. The accumulation and combination of these features may underlie the pathophysiological link between OSAHS and VA, but the exact mechanisms by which OSAHS affects VA may require further investigation. Taken together, these findings suggest that OSAHS may serve as a novel risk factor for VA and related vascular disorders, and that targeting these features may offer therapeutic potential to mitigate the vascular risks associated with OSAHS.
Humans
;
Sleep Apnea, Obstructive/pathology*
;
Aging/physiology*
;
Oxidative Stress/physiology*
;
Animals
4.S100A9 as a promising therapeutic target for diabetic foot ulcers.
Renhui WAN ; Shuo FANG ; Xingxing ZHANG ; Weiyi ZHOU ; Xiaoyan BI ; Le YUAN ; Qian LV ; Yan SONG ; Wei TANG ; Yongquan SHI ; Tuo LI
Chinese Medical Journal 2025;138(8):973-981
BACKGROUND:
Diabetic foot is a complex condition with high incidence, recurrence, mortality, and disability rates. Current treatments for diabetic foot ulcers are often insufficient. This study was conducted to identify potential therapeutic targets for diabetic foot.
METHODS:
Datasets related to diabetic foot and diabetic skin were retrieved from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified using R software. Enrichment analysis was conducted to screen for critical gene functions and pathways. A protein interaction network was constructed to identify node genes corresponding to key proteins. The DEGs and node genes were overlapped to pinpoint target genes. Plasma and chronic ulcer samples from diabetic and non-diabetic individuals were collected. Western blotting, immunohistochemistry, and enzyme-linked immunosorbent assays were performed to verify the S100 calcium binding protein A9 (S100A9), inflammatory cytokine, and related pathway protein levels. Hematoxylin and eosin staining was used to measure epidermal layer thickness.
RESULTS:
In total, 283 common DEGs and 42 node genes in diabetic foot ulcers were identified. Forty-three genes were differentially expressed in the skin of diabetic and non-diabetic individuals. The overlapping of the most significant DEGs and node genes led to the identification of S100A9 as a target gene. The S100A9 level was significantly higher in diabetic than in non-diabetic plasma (178.40 ± 44.65 ng/mL vs. 40.84 ± 18.86 ng/mL) and in chronic ulcers, and the wound healing time correlated positively with the plasma S100A9 level. The levels of inflammatory cytokines (tumor necrosis factor-α, interleukin [IL]-1, and IL-6) and related pathway proteins (phospho-extracellular signal regulated kinase [ERK], phospho-p38, phospho-p65, and p-protein kinase B [Akt]) were also elevated. The epidermal layer was notably thinner in chronic diabetic ulcers than in non-diabetic skin (24.17 ± 25.60 μm vs. 412.00 ± 181.60 μm).
CONCLUSIONS
S100A9 was significantly upregulated in diabetic foot and was associated with prolonged wound healing. S100A9 may impair diabetic wound healing by disrupting local inflammatory responses and skin re-epithelialization.
Calgranulin B/therapeutic use*
;
Diabetic Foot/metabolism*
;
Humans
;
Datasets as Topic
;
Computational Biology
;
Mice, Inbred C57BL
;
Animals
;
Mice
;
Protein Interaction Maps
;
Immunohistochemistry
5.Autophagy in erectile dysfunction: focusing on apoptosis and fibrosis.
Pei-Yue LUO ; Jun-Rong ZOU ; Tao CHEN ; Jun ZOU ; Wei LI ; Qi CHEN ; Le CHENG ; Li-Ying ZHENG ; Biao QIAN
Asian Journal of Andrology 2025;27(2):166-176
In most types of erectile dysfunction, particularly in advanced stages, typical pathological features observed are reduced parenchymal cells coupled with increased tissue fibrosis. However, the current treatment methods have shown limited success in reversing these pathologic changes. Recent research has revealed that changes in autophagy levels, along with alterations in apoptosis and fibrosis-related proteins, are linked to the progression of erectile dysfunction, suggesting a significant association. Autophagy, known to significantly affect cell fate and tissue fibrosis, is currently being explored as a potential treatment modality for erectile dysfunction. However, these present studies are still in their nascent stage, and there are limited experimental data available. This review analyzes erectile dysfunction from a pathological perspective. It provides an in-depth overview of how autophagy is involved in the apoptotic processes of smooth muscle and endothelial cells and its role in the fibrotic processes occurring in the cavernosum. This study aimed to develop a theoretical framework for the potential effectiveness of autophagy in preventing and treating erectile dysfunction, thus encouraging further investigation among researchers in this area.
Male
;
Humans
;
Autophagy/physiology*
;
Apoptosis/physiology*
;
Erectile Dysfunction/physiopathology*
;
Fibrosis
;
Penis/pathology*
;
Animals
;
Endothelial Cells/pathology*
;
Myocytes, Smooth Muscle/pathology*
6.Acupuncture as A Potential Therapeutic Approach for Tourette Syndrome: Modulation of Neurotransmitter Levels and Gut Microbiota.
Bing-Xin WU ; Jun-Ye MA ; Xi-Chang HUANG ; Xue-Song LIANG ; Bai-le NING ; Qian WU ; Shan-Ze WANG ; Jun-He ZHOU ; Wen-Bin FU
Chinese journal of integrative medicine 2025;31(8):735-742
OBJECTIVE:
To investigate the effects of acupuncture on the neurotransmitter levels and gut microbiota in a mouse model of Tourette syndrome (TS).
METHODS:
Thirty-six male C57/BL6 mice were randomly divided into 4 groups using a random number table method: 3,3'-iminodipropionitrile (IDPN) group, control group, acupuncture group, and tiapride group, with 9 mice in each group. In the IDPN group, acupuncture group, and tiapride group, mice received daily intraperitoneal injections of IDPN (300 mg/kg body weight) for 7 consecutive days to induce stereotyped behaviors. Subsequently, in the acupuncture intervention group, standardized acupuncture treatment was administered for 14 consecutive days to IDPN-induced TS model mice. The selected acupoints included Baihui (DU 20), Yintang (DU 29), Waiguan (SJ 5), and Zulinqi (GB 41). In the tiapride group, mice were administered tiapride (50 mg/kg body weight) via oral gavage daily for 14 consecutive days. The control group, IDPN group, and acupuncture group received the same volume of saline orally for 14 consecutive days. Stereotypic behaviors were quantified through behavioral assessments. Neurotransmitter levels, including dopamine (DA), glutamate (Glu), and aspartate (ASP) in striatal tissue were measured using enzyme-linked immunosorbent assay. Dopamine transporter (DAT) expression levels were additionally quantified through quantitative polymerase chain reaction (qPCR). Gut microbial composition was analyzed through 16S ribosomal RNA gene sequencing, while metabolic profiling was conducted using liquid chromatography-mass spectrometry (LC-MS).
RESULTS:
Acupuncture administration significantly attenuated stereotypic behaviors, concurrently reducing striatal levels of DA, Glu and ASP concentrations while upregulating DAT expression compared with untreated TS controls (P<0.05 or P<0.01). Comparative analysis identified significant differences in Muribaculaceae (P=0.001), Oscillospiraceae (P=0.049), Desulfovibrionaceae (P=0.001), and Marinifilaceae (P=0.014) following acupuncture intervention. Metabolomic profiling revealed alterations in 7 metabolites and 18 metabolic pathways when compared to the TS mice, which involved various amino acid metabolisms associated with DA, Glu, and ASP.
CONCLUSIONS
Acupuncture demonstrates significant modulatory effects on both central neurotransmitter systems and gut microbial ecology, thereby highlighting its dual therapeutic potential for TS management through gut-brain axis regulation.
Animals
;
Tourette Syndrome/metabolism*
;
Gastrointestinal Microbiome
;
Neurotransmitter Agents/metabolism*
;
Acupuncture Therapy
;
Male
;
Mice, Inbred C57BL
;
Mice
7.Association of Co-Exposure to Polycyclic Aromatic Hydrocarbons and Metal(loid)s with the Risk of Neural Tube Defects: A Case-Control Study in Northern China.
Xiao Qian JIA ; Yuan LI ; Lei JIN ; Lai Lai YAN ; Ya Li ZHANG ; Ju Fen LIU ; Le ZHANG ; Linlin WANG ; Ai Guo REN ; Zhi Wen LI
Biomedical and Environmental Sciences 2025;38(2):154-166
OBJECTIVE:
Exposure to polycyclic aromatic hydrocarbons (PAHs) or metal(loid)s individually has been associated with neural tube defects (NTDs). However, the impacts of PAH and metal(loid) co-exposure and potential interaction effects on NTD risk remain unclear. We conducted a case-control study in China among population with a high prevalence of NTDs to investigate the combined effects of PAH and metal(loid) exposures on the risk of NTD.
METHODS:
Cases included 80 women who gave birth to offspring with NTDs, whereas controls were 50 women who delivered infants with no congenital malformations. We analyzed the levels of placental PAHs using gas chromatography and mass spectrometry, PAH-DNA adducts with 32P-post-labeling method, and metal(loid)s with an inductively coupled plasma mass spectrometer. Unconditional logistic regression was employed to estimate the associations between individual exposures and NTDs. Least absolute shrinkage and selection operator (LASSO) penalized regression models were used to select a subset of exposures, while additive interaction models were used to identify interaction effects.
RESULTS:
In the single-exposure models, we found that eight PAHs, PAH-DNA adducts, and 28 metal(loid)s were associated with NTDs. Pyrene, selenium, molybdenum, cadmium, uranium, and rubidium were selected through LASSO regression and were statistically associated with NTDs in the multiple-exposure models. Women with high levels of pyrene and molybdenum or pyrene and selenium exhibited significantly increased risk of having offspring with NTDs, indicating that these combinations may have synergistic effects on the risk of NTDs.
CONCLUSION
Our findings suggest that individual PAHs and metal(loid)s, as well as their interactions, may be associated with the risk of NTDs, which warrants further investigation.
Humans
;
Neural Tube Defects/chemically induced*
;
Polycyclic Aromatic Hydrocarbons/adverse effects*
;
Female
;
Case-Control Studies
;
China/epidemiology*
;
Adult
;
Pregnancy
;
Environmental Pollutants
;
Maternal Exposure/adverse effects*
;
Metals/toxicity*
;
Young Adult
;
Risk Factors
8.Mechanobiology of Long-distance Mitochondria Transport in Neuronal Axon
Hu-Cheng ZHAO ; Yan-Li SUN ; Shu-Le QIAN ; Xi-Qiao FENG
Progress in Biochemistry and Biophysics 2024;51(9):2028-2036
As polar cells, neurons are composed of a cell body, dendritic networks, and long, branched axons. To maintain normal physiological functions throughout the lifespan of vertebrates, differentiated neurons require substantial energy to sustain resting potential and synaptic transmission. Neurons predominantly rely on ATP generated through mitochondrial oxidative phosphorylation for energy. They transport and accumulate healthy mitochondria to energy-demanding areas, such as the presynaptic terminals of axon branches, through long-distance transport and anchoring, while reversing the transport of aged or damaged mitochondria in the axon terminals back to the soma for degradation. This article, integrating authors’ research, discusses from a mechanical perspective how mitochondria overcome resistance to achieve long-distance transport along axons under the influence of driving forces. The review covers topics such as microtubule polarity, microtubule motor proteins, mitochondrial docking protein complexes, interactions between mitochondria and anchoring proteins, intracellular resistance, interactions between mitochondria and the endoplasmic reticulum, and aspects of mitochondrial biogenesis, fission, fusion, division, and quality control. These novel perspectives will provide important insights for understanding neurological diseases caused by mitochondrial transport dysfunctions.
9.Effect of Xiayuxue Decoction against renal injury in mice with non-alcoholic fatty liver disease and its mechanism
Xin ZHAO ; Zhiyi WANG ; Le TAO ; Guangyue YANG ; Wei ZHANG ; Liu WU ; Wenting MA ; Qian CHEN ; Xuling LIU ; Cheng LIU
Journal of Clinical Hepatology 2024;40(11):2213-2220
Objective To investigate the effect of non-alcoholic fatty liver disease(NAFLD)induced by high-fat diet(HFD)on the kidneys of mice and the protective effect and mechanism of Xiayuxue Decoction.Methods A total of 25 healthy controls and 25 NAFLD patients who attended Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine from September 2020 to September 2021 were enrolled,and the levels of total cholesterol(TC),triglyceride(TG),blood urea nitrogen(BUN),creatinine(Cr),and uric acid(UA)were measured.A total of 24 male C57BL/6 mice were randomly divided into low-fat diet(LFD)group,HFD group,and HFD+Xiayuxue Decoction group(XYXD group),with 8 mice in each group,and since week 13,XYXD was administered by gavage once a day for 6 weeks till the end of week 18.The level of TC,TG,BUN,and Cr were measured for each group.HE staining and oil red staining were used to observe the pathological changes of the liver and the kidneys;immunohistochemical double staining was used to measure the expression levels of CD68 and alpha-smooth muscle actin(α-SMA);quantitative real-time PCR was used to measure the expression levels of sterol regulatory element binding protein 1(SREBP1),fatty acid synthase(FASN),interleukin-6(IL-6),tumor necrosis factor-α(TNF-α),Desmin,and α-SMA in renal tissue;Western blot was used to measure the protein expression levels of SREBP1 and TNF-α.A one-way analysis of variance was used for comparison of continuous data between multiple groups,and the least significant difference t-test was used for pairwise comparison;the independent-samples t-test was used for comparison between two groups.Results Compared with the healthy controls,NAFLD patients showed significant increases in the levels of TC,TG,BUN,Cr,and UA(all P<0.05).Compared with the LFD group,the HFD group had significant increases in body weight,TC,TG,BUN,and Cr(all P<0.001),and compared with the HFD group,the XYXD group showed significant inhibition of the expression of TC,TG,BUN,and Cr(all P<0.001).Liver pathological examination showed that compared with the LFD group,the HFD group showed significant increases in hepatic steatosis and inflammatory infiltration,while the XYXD group showed significant alleviation of lesions.Renal pathological examination showed that compared with the LFD group,the HFD group had significant inflammatory infiltration,steatosis,and collagen formation in renal tissue,and compared with the HFD group,XYXD significantly alleviated inflammatory infiltration and inhibited steatosis and collagen formation.Quantitative real-time PCR showed that compared with the LFD group,the HFD group had significant increases in the relative mRNA expression levels of SREBP1,FASN,IL-6,TNF-α,Desmin,and α-SMA in renal tissue(all P<0.001),and compared with the HFD group,the XYXD group had significant reductions in the relative expression levels of these indicators(all P<0.001).Western blot showed that compared with the LFD group,the HFD group had significant increases in the protein expression levels of SREBP1 and TNF-α(P<0.05),and compared with the HFD group,the XYXD group had significant reductions in the protein expression levels of SREBP1 and TNF-α(P<0.05).Immunohistochemical staining showed that compared with the LFD group,the HFD group had significant increases in the positive staining or the double positive staining of α-SMA and CD68(P<0.05),and compared with the HFD group,the XYXD group showed significant reductions(P<0.05).Conclusion HFD can induce renal steatosis,inflammatory infiltration,and collagen formation,and XYXD might exert a protective effect on the kidneys by inhibiting the expression of macrophages and myofibroblasts in renal tissue.
10.Analysis of Plasma Metabolic Profile in Children with Transfusion-Dependent Thalassemia
Xiao-Lan LIU ; Wen-Zhong LI ; Qian ZHANG ; Xue-Mei WANG ; Yu-Ru ZHOU ; Cheng-Gao WU ; Si-Min XIONG ; Ai-Ping LE ; Zhang-Lin ZHANG
Journal of Experimental Hematology 2024;32(2):525-531
Objective:To explore the plasma metabolomic characteristics of children with transfusion-dependent thalassemia(TDT),and reveal the changes of metabolic pattern in children with TDT.Methods:23 children with TDT who received regular blood transfusion in Ganzhou Women and Children's Health Care Hospital in 2021 were selected,and 11 healthy children who underwent physical examination during the same period were selected as the control group.The routine indexes between children with TDT and the control group were compared,and then the metabolic composition of plasma samples from children with TDT and the control group was detected by liquid chromatography-mass spectrometry.An OPLS-DA model was established to perform differential analysis on the detected metabolites,and the differential metabolic pathways between the two groups were analyzed based on the differential metabolites.Results:The results of routine testing showed that the indexes of ferritin,bilirubin,total bile acid,glucose and triglycerides in children with TDT were significantly higher than those in healthy controls,while hemoglobin and total cholesterol were significantly lower(all P<0.05).However there was no significant difference in lactate dehydrogenase between the two groups(P>0.05).Compared with the control group,190 differential metabolites(VIP>1)were identified in TDT children.Among them,168 compounds such as arginine,proline and glycocholic acid were significantly increased,while the other 22 compounds such as myristic acid,eleostearic acid,palmitic acid and linoleic acid were significantly decreased.The metabolic pathway analysis showed that the metabolic impact of TDT on children mainly focused on the upregulation of amino acid metabolism and downregulation of lipid metabolism.Conclusion:The amino acid and lipid metabolism in children with TDT were significantly changed compared with the healthy control group.This finding is helpful to optimize the treatment choice for children with TDT,and provides a new idea for clinical treatment.

Result Analysis
Print
Save
E-mail