1.Relevance between parental psychological control and Internet gaming disorder in middle school students
WANG Xi, JIANG Hong, WANG Lina, ZHANG Hua, ZHANG Wei, MA Le
Chinese Journal of School Health 2025;46(4):544-547
Objective:
To analyze the relationship between parental psychological control and Internet Gaming Disorder (IGD) among junior high school students, so as to provide evidence for preventing IGD development in adolescents.
Methods:
From August 2019 to February 2020, a survey was conducted among 1 169 junior high school students from three middle schools in Xian using stratified cluster sampling. The Parental Psychological Control Scale and IGD Scale were administered to assess parental psychological control and IGD prevalence. Univariate and binary Logistic regression analyses were used to explore IGD risk factors and their correlation with parental psychological control.
Results:
The detection rate of IGD in middle school students was 19.9%(184/1 169). Multivariate Logistic regression revealed that compared to those with lower parental psychological control scores(≤21 points), students with higher parental psychological control scores (>21 points) had a higher risk of IGD (OR=1.82, 95%CI=1.21-2.74), a 1.58fold higher risk of selfperceived gaming addiction (95%CI=1.07-2.30), as well as reduced likelihood of seeking external help to reduce gaming time (OR=0.66, 95%CI=0.47-0.94) (P<0.05).
Conclusions
Parental psychological control may elevate the risks of IGD and selfperceived addiction while diminishing proactive helpseeking behaviors to reduce gaming time. Parents should enhance communication with adolescents and provide positive guidance to mitigate potential gamingrelated harms.
2.YAK577 Attenuates Cardiac Remodeling and Fibrosis in Isoproterenol-Infused Heart Failure Mice by Downregulating MMP12
Hongyan ZHOU ; Hae Jin KEE ; Le WAN ; Yodita ASFAHA ; Fabian FISCHER ; Matthias U KASSACK ; Thomas KURZ ; Seong Hoon KIM ; Seung-Jung KEE ; Young Joon HONG ; Myung Ho JEONG
Korean Circulation Journal 2025;55(3):231-247
Background and Objectives:
Heart failure is a potentially fatal event caused by diverse cardiovascular diseases, leading to high morbidity and mortality. Histone deacetylase (HDAC) inhibitors positively influence cardiac hypertrophy, fibrosis, hypertension, myocardial infarction, and heart failure, causing some side effects. We aimed to investigate the effect of the novel HDAC inhibitor YAK577 on the heart failure mouse model and its underlying mechanism.
Methods:
New hydroxamic acid YAK577 was prepared via methyl-2,3-diphenylpropanoate synthesis using carboxylic acids. We used a micro-osmotic pump, including isoproterenol (ISO; 80 mg/kg/day), to induce a heart failure with reduced ejection fraction. Cardiac hypertrophy was assessed by heart weight to body weight ratio and cross-sectional area.The left ventricular (LV) function was assessed by echocardiography. Fibrosis was evaluated using picrosirius red staining. Overexpression and knockdown experiments were performed to investigate the association between HDAC8 and matrix metalloproteinase 12 (MMP12).
Results:
YAK577 treatment restored ISO-induced reduction in LV fractional shortening and ejection fraction (n=9–11). YAK577 significantly downregulated cardiac hypertrophy marker genes (natriuretic peptide B, NPPB, and myosin heavy chain 7, MYH7) and cardiomyocyte size in vitro but not in vivo. YAK577 ameliorated cardiac fibrosis and fibrosis-related genes in vivo and in vitro. Additionally, YAK577 reduced elevated HDAC8 and MMP12 mRNA and protein expressions in ISO-infused mice, H9c2 cells, and rat neonatal cardiomyocytes.HDAC8 overexpression stimulated MMP12 and NPPB mRNA levels, while HDAC8 knockdown downregulated these genes.
Conclusions
YAK577 acts as a novel heart failure drug through the HDAC8/MMP12 pathway.
3.Low-air-pressure clean room system: A flexible, high-quality model for assisted reproduction laboratories
Minh Tam LE ; Trung Van NGUYEN ; Thai Thanh Thi NGUYEN ; Hong Nhan Thi DANG ; Quoc Huy Vu NGUYEN
Clinical and Experimental Reproductive Medicine 2025;52(1):56-64
Objective:
This study aimed to develop a configurable clean room paradigm with low air pressure for assisted reproductive technology (ART) clinics and demonstrate the concept’s efficacy using in vitro fertilization (IVF) treatment.
Methods:
A high-standard clean room system with positive pressure (13 Pa) was built using accessible materials and equipment for ART laboratories. Methods for controlling and evaluating the clean room’s characteristics were developed and implemented for quality assessment and calibration to maximize efficiency. The feasibility of the flexible clean room concept was assessed by analyzing the key performance indicators of embryo culture and IVF treatment.
Results:
After 3 weeks of testing, the concentration of particles ≥0.5 μm was 6.04 times lower than the International Organization for Standardization (ISO) class 5 standard (3,520 particles/m3) in the IVF laboratory. Air pressure, noise, temperature, and humidity were controlled stably and appropriately. Five days after installation and handover, the volatile organic compound concentration dropped to 0.00 ppm. With blastocysts and a respectable blastocyst rate, embryonic culture with female patients younger than 40 matched the criteria (63.5% and 38.9%, respectively). After vitrified blastocysts were transferred, the pregnancy and implantation rates were 58.5% and 36.2%, respectively, demonstrating a high degree of treatment success.
Conclusion
Our customizable, high-quality, low-air-pressure clean room model can be implemented to achieve positive outcomes for infertility treatment.
4.YAK577 Attenuates Cardiac Remodeling and Fibrosis in Isoproterenol-Infused Heart Failure Mice by Downregulating MMP12
Hongyan ZHOU ; Hae Jin KEE ; Le WAN ; Yodita ASFAHA ; Fabian FISCHER ; Matthias U KASSACK ; Thomas KURZ ; Seong Hoon KIM ; Seung-Jung KEE ; Young Joon HONG ; Myung Ho JEONG
Korean Circulation Journal 2025;55(3):231-247
Background and Objectives:
Heart failure is a potentially fatal event caused by diverse cardiovascular diseases, leading to high morbidity and mortality. Histone deacetylase (HDAC) inhibitors positively influence cardiac hypertrophy, fibrosis, hypertension, myocardial infarction, and heart failure, causing some side effects. We aimed to investigate the effect of the novel HDAC inhibitor YAK577 on the heart failure mouse model and its underlying mechanism.
Methods:
New hydroxamic acid YAK577 was prepared via methyl-2,3-diphenylpropanoate synthesis using carboxylic acids. We used a micro-osmotic pump, including isoproterenol (ISO; 80 mg/kg/day), to induce a heart failure with reduced ejection fraction. Cardiac hypertrophy was assessed by heart weight to body weight ratio and cross-sectional area.The left ventricular (LV) function was assessed by echocardiography. Fibrosis was evaluated using picrosirius red staining. Overexpression and knockdown experiments were performed to investigate the association between HDAC8 and matrix metalloproteinase 12 (MMP12).
Results:
YAK577 treatment restored ISO-induced reduction in LV fractional shortening and ejection fraction (n=9–11). YAK577 significantly downregulated cardiac hypertrophy marker genes (natriuretic peptide B, NPPB, and myosin heavy chain 7, MYH7) and cardiomyocyte size in vitro but not in vivo. YAK577 ameliorated cardiac fibrosis and fibrosis-related genes in vivo and in vitro. Additionally, YAK577 reduced elevated HDAC8 and MMP12 mRNA and protein expressions in ISO-infused mice, H9c2 cells, and rat neonatal cardiomyocytes.HDAC8 overexpression stimulated MMP12 and NPPB mRNA levels, while HDAC8 knockdown downregulated these genes.
Conclusions
YAK577 acts as a novel heart failure drug through the HDAC8/MMP12 pathway.
5.Low-air-pressure clean room system: A flexible, high-quality model for assisted reproduction laboratories
Minh Tam LE ; Trung Van NGUYEN ; Thai Thanh Thi NGUYEN ; Hong Nhan Thi DANG ; Quoc Huy Vu NGUYEN
Clinical and Experimental Reproductive Medicine 2025;52(1):56-64
Objective:
This study aimed to develop a configurable clean room paradigm with low air pressure for assisted reproductive technology (ART) clinics and demonstrate the concept’s efficacy using in vitro fertilization (IVF) treatment.
Methods:
A high-standard clean room system with positive pressure (13 Pa) was built using accessible materials and equipment for ART laboratories. Methods for controlling and evaluating the clean room’s characteristics were developed and implemented for quality assessment and calibration to maximize efficiency. The feasibility of the flexible clean room concept was assessed by analyzing the key performance indicators of embryo culture and IVF treatment.
Results:
After 3 weeks of testing, the concentration of particles ≥0.5 μm was 6.04 times lower than the International Organization for Standardization (ISO) class 5 standard (3,520 particles/m3) in the IVF laboratory. Air pressure, noise, temperature, and humidity were controlled stably and appropriately. Five days after installation and handover, the volatile organic compound concentration dropped to 0.00 ppm. With blastocysts and a respectable blastocyst rate, embryonic culture with female patients younger than 40 matched the criteria (63.5% and 38.9%, respectively). After vitrified blastocysts were transferred, the pregnancy and implantation rates were 58.5% and 36.2%, respectively, demonstrating a high degree of treatment success.
Conclusion
Our customizable, high-quality, low-air-pressure clean room model can be implemented to achieve positive outcomes for infertility treatment.
6.YAK577 Attenuates Cardiac Remodeling and Fibrosis in Isoproterenol-Infused Heart Failure Mice by Downregulating MMP12
Hongyan ZHOU ; Hae Jin KEE ; Le WAN ; Yodita ASFAHA ; Fabian FISCHER ; Matthias U KASSACK ; Thomas KURZ ; Seong Hoon KIM ; Seung-Jung KEE ; Young Joon HONG ; Myung Ho JEONG
Korean Circulation Journal 2025;55(3):231-247
Background and Objectives:
Heart failure is a potentially fatal event caused by diverse cardiovascular diseases, leading to high morbidity and mortality. Histone deacetylase (HDAC) inhibitors positively influence cardiac hypertrophy, fibrosis, hypertension, myocardial infarction, and heart failure, causing some side effects. We aimed to investigate the effect of the novel HDAC inhibitor YAK577 on the heart failure mouse model and its underlying mechanism.
Methods:
New hydroxamic acid YAK577 was prepared via methyl-2,3-diphenylpropanoate synthesis using carboxylic acids. We used a micro-osmotic pump, including isoproterenol (ISO; 80 mg/kg/day), to induce a heart failure with reduced ejection fraction. Cardiac hypertrophy was assessed by heart weight to body weight ratio and cross-sectional area.The left ventricular (LV) function was assessed by echocardiography. Fibrosis was evaluated using picrosirius red staining. Overexpression and knockdown experiments were performed to investigate the association between HDAC8 and matrix metalloproteinase 12 (MMP12).
Results:
YAK577 treatment restored ISO-induced reduction in LV fractional shortening and ejection fraction (n=9–11). YAK577 significantly downregulated cardiac hypertrophy marker genes (natriuretic peptide B, NPPB, and myosin heavy chain 7, MYH7) and cardiomyocyte size in vitro but not in vivo. YAK577 ameliorated cardiac fibrosis and fibrosis-related genes in vivo and in vitro. Additionally, YAK577 reduced elevated HDAC8 and MMP12 mRNA and protein expressions in ISO-infused mice, H9c2 cells, and rat neonatal cardiomyocytes.HDAC8 overexpression stimulated MMP12 and NPPB mRNA levels, while HDAC8 knockdown downregulated these genes.
Conclusions
YAK577 acts as a novel heart failure drug through the HDAC8/MMP12 pathway.
7.Low-air-pressure clean room system: A flexible, high-quality model for assisted reproduction laboratories
Minh Tam LE ; Trung Van NGUYEN ; Thai Thanh Thi NGUYEN ; Hong Nhan Thi DANG ; Quoc Huy Vu NGUYEN
Clinical and Experimental Reproductive Medicine 2025;52(1):56-64
Objective:
This study aimed to develop a configurable clean room paradigm with low air pressure for assisted reproductive technology (ART) clinics and demonstrate the concept’s efficacy using in vitro fertilization (IVF) treatment.
Methods:
A high-standard clean room system with positive pressure (13 Pa) was built using accessible materials and equipment for ART laboratories. Methods for controlling and evaluating the clean room’s characteristics were developed and implemented for quality assessment and calibration to maximize efficiency. The feasibility of the flexible clean room concept was assessed by analyzing the key performance indicators of embryo culture and IVF treatment.
Results:
After 3 weeks of testing, the concentration of particles ≥0.5 μm was 6.04 times lower than the International Organization for Standardization (ISO) class 5 standard (3,520 particles/m3) in the IVF laboratory. Air pressure, noise, temperature, and humidity were controlled stably and appropriately. Five days after installation and handover, the volatile organic compound concentration dropped to 0.00 ppm. With blastocysts and a respectable blastocyst rate, embryonic culture with female patients younger than 40 matched the criteria (63.5% and 38.9%, respectively). After vitrified blastocysts were transferred, the pregnancy and implantation rates were 58.5% and 36.2%, respectively, demonstrating a high degree of treatment success.
Conclusion
Our customizable, high-quality, low-air-pressure clean room model can be implemented to achieve positive outcomes for infertility treatment.
8.YAK577 Attenuates Cardiac Remodeling and Fibrosis in Isoproterenol-Infused Heart Failure Mice by Downregulating MMP12
Hongyan ZHOU ; Hae Jin KEE ; Le WAN ; Yodita ASFAHA ; Fabian FISCHER ; Matthias U KASSACK ; Thomas KURZ ; Seong Hoon KIM ; Seung-Jung KEE ; Young Joon HONG ; Myung Ho JEONG
Korean Circulation Journal 2025;55(3):231-247
Background and Objectives:
Heart failure is a potentially fatal event caused by diverse cardiovascular diseases, leading to high morbidity and mortality. Histone deacetylase (HDAC) inhibitors positively influence cardiac hypertrophy, fibrosis, hypertension, myocardial infarction, and heart failure, causing some side effects. We aimed to investigate the effect of the novel HDAC inhibitor YAK577 on the heart failure mouse model and its underlying mechanism.
Methods:
New hydroxamic acid YAK577 was prepared via methyl-2,3-diphenylpropanoate synthesis using carboxylic acids. We used a micro-osmotic pump, including isoproterenol (ISO; 80 mg/kg/day), to induce a heart failure with reduced ejection fraction. Cardiac hypertrophy was assessed by heart weight to body weight ratio and cross-sectional area.The left ventricular (LV) function was assessed by echocardiography. Fibrosis was evaluated using picrosirius red staining. Overexpression and knockdown experiments were performed to investigate the association between HDAC8 and matrix metalloproteinase 12 (MMP12).
Results:
YAK577 treatment restored ISO-induced reduction in LV fractional shortening and ejection fraction (n=9–11). YAK577 significantly downregulated cardiac hypertrophy marker genes (natriuretic peptide B, NPPB, and myosin heavy chain 7, MYH7) and cardiomyocyte size in vitro but not in vivo. YAK577 ameliorated cardiac fibrosis and fibrosis-related genes in vivo and in vitro. Additionally, YAK577 reduced elevated HDAC8 and MMP12 mRNA and protein expressions in ISO-infused mice, H9c2 cells, and rat neonatal cardiomyocytes.HDAC8 overexpression stimulated MMP12 and NPPB mRNA levels, while HDAC8 knockdown downregulated these genes.
Conclusions
YAK577 acts as a novel heart failure drug through the HDAC8/MMP12 pathway.
9.Efficacy analysis of plasma exchange treatment for thymoma-associated myasthenia gravis
Miao HONG ; Dongdong CAI ; Caihui WEI ; Bing HU ; Kun XIAO ; Fangming RUAN ; Piaoping HU ; Aiping LE ; Zhanglin ZHANG ; Chang ZHONG
Chinese Journal of Blood Transfusion 2025;38(9):1188-1194
Objective: To evaluate the efficacy and safety of plasma exchange (PE) in thymoma-associated myasthenia gravis (MG), thereby to provide theoretical support for its application in the treatment of thymoma-associated MG. Methods: A total of 133 patients with thymoma-associated MG admitted from January 2018 to September 2024 were retrospectively analyzed. Patients were matched using propensity score to reduce selection bias, yielding 22 matched pairs for both PE group (n=22) and non-PE group (n=22). Patient characteristics including gender, age of disease onset, course of disease, history of thymoma resection, clinical absolute scores [clinical absolute scores (CAS) and clinical relative scores (CRS)], and synchronized immunotherapy regimen of the two groups were analyzed. The CAS scores before and after treatment were compared between the two groups, and the CRS was used to assess the treatment efficiency. Safety of the two treatment regimens were also compared. Continuous variables were compared using the t-test or ANOVA, while categorical data were compared by the chi-square test. Results: A total of 133 patients were included and divided into two groups according to whether they underwent plasma exchange treatment: the PE group (n=22) and the non-PE group (n=111). To exclude bias caused by large difference in the number of cases between the two groups, we performed propensity score matching. After matching, the number of cases in both groups was 22. There was no significant difference in baseline clinical characteristics between the two groups (P>0.05), including gender, age of onset, duration of disease course, history of thymectomy and baseline CAS score before treatment. Compared to the non-PE group, patients in the PE group showed more significant improvement in CAS score (5.09±1.95 vs 3.59±1.50, P<0.05) and a higher CRS score (75.00% vs 50.00%, P<0.001). Compared to the non-PE group, PE group had significantly longer ICU stay, longer hospital stay and higher hospitalization cost (P<0.05). There was no statistically significant difference in adverse events between the two groups during treatment (P>0.05). During long-term follow-up, both the PE and non-PE groups showed relatively low 1-, 3-, and 5-year recurrence rate, with no significant difference between the two groups (P>0.05). Conclusion: This study indicates that plasma exchange has clear value in the treatment of patients with thymoma-associated myasthenia gravis. It can not only significantly improve patients' muscle strength to alleviate motor dysfunction and enhance quality of life, but also does not significantly increase the incidence of adverse reactions. Therefore, it can be regarded as one of the preferred treatment options that achieve a "balance between efficacy and safety" for such patients, and provides an important basis for optimizing treatment strategies, improving prognosis, and promoting the application of subsequent treatment regimens.
10.Cold stimulation regulates lipid metabolism and the secretion of exosomes from subcutaneous adipose tissue in mice.
Shuo KE ; Li XU ; Rui-Xue SHI ; Jia-Qi WANG ; Le CUI ; Yuan JI ; Jing LI ; Xiao-Hong JIANG
Acta Physiologica Sinica 2025;77(2):231-240
Cold has been a long-term survival challenge in the evolutionary process of mammals. In response to cold stress, in addition to brown adipose tissue (BAT) dissipating energy as heat through glucose and lipid oxidation to maintain body temperature, cold stimulation can strongly activate thermogenesis and energy expenditure in beige fat cells, which are widely distributed in the subcutaneous layer. However, the effects of cold stimulation on other tissues and systemic lipid metabolism remain unclear. Our previous research indicated that, under cold stress, BAT not only produces heat but also secretes numerous exosomes to mediate BAT-liver crosstalk. Whether subcutaneous fat has a similar mechanism is still unknown. Therefore, this study aimed to investigate the alterations in lipid metabolism across various tissues under cold exposure and to explore whether subcutaneous fat regulates systemic glucose and lipid metabolism via exosomes, thereby elucidating the regulatory mechanisms of lipid metabolism homeostasis under physiological stress. RT-qPCR, Western blot, and H&E staining methods were used to investigate the physiological changes in lipid metabolism in the serum, liver, epididymal white adipose tissue, and subcutaneous fat of mice under cold stimulation. The results revealed that cold exposure significantly enhanced the thermogenic activity of subcutaneous adipose tissue and markedly increased exosome secretion. These exosomes were efficiently taken up by hepatocytes, where they profoundly influenced hepatic lipid metabolism, as evidenced by alterations in the expression levels of key genes involved in lipid synthesis and catabolism pathways. This study has unveiled a novel mechanism by which subcutaneous fat regulates lipid metabolism through exosome secretion under cold stimulation, providing new insights into the systemic regulatory role of beige adipocytes under cold stress and offering a theoretical basis for the development of new therapeutic strategies for obesity and metabolic diseases.
Animals
;
Lipid Metabolism/physiology*
;
Mice
;
Exosomes/metabolism*
;
Cold Temperature
;
Subcutaneous Fat/physiology*
;
Thermogenesis/physiology*
;
Adipose Tissue, Brown/metabolism*
;
Male

Result Analysis
Print
Save
E-mail