1.Effect of warm acupuncture on PINK1/Parkin pathway in the skeletal muscle of rats with chronic fatigue syndrome
Huayuan LI ; Chun LI ; Junwei LIU ; Ting WANG ; Long LI ; Yongli WU
Chinese Journal of Tissue Engineering Research 2025;29(8):1618-1625
BACKGROUND:It has been found that mitochondrial function is abnormal in patients with chronic fatigue syndrome,and the administration of coenzymes can improve the symptoms.Warm acupuncture is one of the most important treatments for this disease,but its mechanism of action is unclear. OBJECTIVE:To investigate the effects of warm acupuncture on the phosphatase and tensin inducible kinase 1(PINK1)/Parkin pathway in the skeletal muscle of rats with chronic fatigue syndrome. METHODS:After 3 days of adaptive feeding,32 male Sprague-Dawley rats were randomly divided into normal control,model,warm acupuncture,and coenzyme Q groups with 8 rats in each group.The chronic fatigue syndrome model was established by multiple factors,including swimming exhaustion,chronic immobilization and fasting.After successful modeling,the normal group and the model group were treated with the same fixation and gavage procedures,and the warm acupuncture group was treated with acupuncture at Guanyuan,Zhongwan and Zusanli(bilateral)points,once a day.After the needling was inserted,the moxa pillar was put on the needle handle and ignited,three sessions once.The coenzyme Q group was given 1 mL/kg coenzyme by gavage,once a day for 14 days.The body mass,exhaustive swimming time and food utilization rate during the treatment were recorded.After the treatment,the bilateral gastrocnemius muscles of rats in each group were collected.The pathological morphology of the gastrocnemius muscle was observed by hematoxylin-eosin staining,the mitochondrial morphology and autophagosome of the gastrocnemius muscle were observed by transmission electron microscope.The expression level of microtubule-associated protein light chain 3(LC3)Ⅱ protein in the skeletal muscle was detected by immunohistochemistry.Western blot was used to detect the expression of PINK1,Parkin,LC3 Ⅰ,and LC3 Ⅱ in the skeletal muscle. RESULTS AND CONCLUSION:Compared with the normal group,the gastrocnemius muscle nuclei of the model group were pyknotic,condensed,the number of cells was increased,the cells were arranged disorderly,and the fibers in the gastrocnemius muscle were tightly arranged in the model group.Compared with the model group,the intercellular space became smaller,the nuclei were reduced,and the cell arrangement was orderly in the warm acupuncture group and coenzyme Q group.Compared with the normal group,the skeletal muscle mitochondria in the model group were swollen,fused,and vacuolated seriously,the membrane was partially broken,the matrix was more dissolved,the cristae was broken and disappeared,and autophagy appeared.Compared with the model group,the number of mitochondria increased,the arrangement was relatively neat,mitochondrial vacuolization and rupture of cristae in the gastrocnemius muscle were improved,the membrane structure was relatively intact,and autophagy occurred.Compared with the normal group,the expression of PINK1 protein in the skeletal muscle of the model group was significantly increased(P<0.05),while the expression of Parkin,LC3 Ⅱ and LC3 Ⅱ/Ⅰ protein was slightly upregulated(P>0.05).Compared with the model group,the protein expressions of PINK1,Parkin,LC3 Ⅱ and LC3 Ⅱ/Ⅰ were significantly upregulated in the warm acupuncture and coenzyme Q groups(P<0.05),and the up-regulation was more significant in the warm acupuncture group.To conclude,warm acupuncture can play a role in the treatment of chronic fatigue syndrome by activating the PINK1/Parkin pathway,upregulating LC3 Ⅱ expression,forming mitochondrial autophagosomes,promoting the degradation of damaged mitochondria,and improving mitochondrial quality.
2.Status of Clinical Practice Guideline Information Platforms
Xueqin ZHANG ; Yun ZHAO ; Jie LIU ; Long GE ; Ying XING ; Simeng REN ; Yifei WANG ; Wenzheng ZHANG ; Di ZHANG ; Shihua WANG ; Yao SUN ; Min WU ; Lin FENG ; Tiancai WEN
Medical Journal of Peking Union Medical College Hospital 2025;16(2):462-471
Clinical practice guidelines represent the best recommendations for patient care. They are developed through systematically reviewing currently available clinical evidence and weighing the relative benefits and risks of various interventions. However, clinical practice guidelines have to go through a long translation cycle from development and revision to clinical promotion and application, facing problems such as scattered distribution, high duplication rate, and low actual utilization. At present, the clinical practice guideline information platform can directly or indirectly solve the problems related to the lengthy revision cycles, decentralized dissemination and limited application of clinical practice guidelines. Therefore, this paper systematically examines different types of clinical practice guideline information platforms and investigates their corresponding challenges and emerging trends in platform design, data integration, and practical implementation, with the aim of clarifying the current status of this field and providing valuable reference for future research on clinical practice guideline information platforms.
3.Application of Bedside Hypertonic Saline-contrast Electrical Impedance Tomography of Lung Perfusion in Patients After Pulmonary Endarterectomy: Two Cases and Literature Review
Qiuyan CAI ; Wanglin LIU ; Wei CHENG ; Jingjing LIU ; Chaoji ZHANG ; Jianzhou LIU ; Yun LONG ; Huaiwu HE
Medical Journal of Peking Union Medical College Hospital 2025;16(2):513-518
Pulmonary electrical impedance tomography (EIT), a noninvasive, continuous, dynamic, and radiation-free bedside imaging technique for monitoring pulmonary ventilation, is now widely utilized in the diagnosis and management of critically ill patients. Beyond ventilation monitoring, hypertonic saline contrast-enhanced EIT for bedside pulmonary perfusion assessment has recently garnered significant attention. This article describes the application of hypertonic saline contrast-enhanced EIT to evaluate pulmonary perfusion in two patients following pulmonary endarterectomy, providing a reference for its perioperative application in such patients.
4.Research progress on protein lactylation in ophthalmic diseases
Hongliang CHEN ; Long SUO ; Qiankun WANG ; Shuang LIU
International Eye Science 2025;25(5):797-801
Lactylation, a recently identified post-translational modification of proteins, is induced by lactic acid and can occur at multiple lysine residues in both histone and non-histone proteins. This modification plays a role in disease pathogenesis by affecting transcriptional regulation, mitochondrial metabolism, and immune inflammation. Significant advancements have been made in understanding the mechanisms of lactylation in various ophthalmic diseases, including retinal neovascularization, uveitis, melanoma, and myopia. This paper provides a comprehensive review of the relationship between lactic acid and lactylation, the regulatory mechanisms of lactylation, and the role of lactylation in different ocular diseases. Additionally, it addresses current research limitations and future directions, which is of great significance to elucidate the molecular mechanisms of lactylation in eye diseases and improving the diagnosis and targeted treatment of these conditions.
5.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
6.Applications of EEG Biomarkers in The Assessment of Disorders of Consciousness
Zhong-Peng WANG ; Jia LIU ; Long CHEN ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(4):899-914
Disorders of consciousness (DOC) are pathological conditions characterized by severely suppressed brain function and the persistent interruption or loss of consciousness. Accurate diagnosis and evaluation of DOC are prerequisites for precise treatment. Traditional assessment methods are primarily based on behavioral scales, which are inherently subjective and rely on observable behaviors. Moreover, traditional methods have a high misdiagnosis rate, particularly in distinguishing minimally conscious state (MCS) from vegetative state/unresponsive wakefulness syndrome (VS/UWS). This diagnostic uncertainty has driven the exploration of objective, reliable, and efficient assessment tools. Among these tools, electroencephalography (EEG) has garnered significant attention for its non-invasive nature, portability, and ability to capture real-time neurodynamics. This paper systematically reviews the application of EEG biomarkers in DOC assessment. These biomarkers are categorized into 3 main types: resting-state EEG features, task-related EEG features, and features derived from transcranial magnetic stimulation-EEG (TMS-EEG). Resting-state EEG biomarkers include features based on spectrum, microstates, nonlinear dynamics, and brain network metrics. These biomarkers provide baseline representations of brain activity in DOC patients. Studies have shown their ability to distinguish different levels of consciousness and predict clinical outcomes. However, because they are not task-specific, they are challenging to directly associate with specific brain functions or cognitive processes. Strengthening the correlation between resting-state EEG features and consciousness-related networks could offer more direct evidence for the pathophysiological mechanisms of DOC. Task-related EEG features include event-related potentials, event-related spectral modulations, and phase-related features. These features reveal the brain’s responses to external stimuli and provide dynamic information about residual cognitive functions, reflecting neurophysiological changes associated with specific cognitive, sensory, or behavioral tasks. Although these biomarkers demonstrate substantial value, their effectiveness rely on patient cooperation and task design. Developing experimental paradigms that are more effective at eliciting specific EEG features or creating composite paradigms capable of simultaneously inducing multiple features may more effectively capture the brain activity characteristics of DOC patients, thereby supporting clinical applications. TMS-EEG is a technique for probing the neurodynamics within thalamocortical networks without involving sensory, motor, or cognitive functions. Parameters such as the perturbational complexity index (PCI) have been proposed as reliable indicators of consciousness, providing objective quantification of cortical dynamics. However, despite its high sensitivity and objectivity compared to traditional EEG methods, TMS-EEG is constrained by physiological artifacts, operational complexity, and variability in stimulation parameters and targets across individuals. Future research should aim to standardize experimental protocols, optimize stimulation parameters, and develop automated analysis techniques to improve the feasibility of TMS-EEG in clinical applications. Our analysis suggests that no single EEG biomarker currently achieves an ideal balance between accuracy, robustness, and generalizability. Progress is constrained by inconsistencies in analysis methods, parameter settings, and experimental conditions. Additionally, the heterogeneity of DOC etiologies and dynamic changes in brain function add to the complexity of assessment. Future research should focus on the standardization of EEG biomarker research, integrating features from resting-state, task-related, and TMS-EEG paradigms to construct multimodal diagnostic models that enhance evaluation efficiency and accuracy. Multimodal data integration (e.g., combining EEG with functional near-infrared spectroscopy) and advancements in source localization algorithms can further improve the spatial precision of biomarkers. Leveraging machine learning and artificial intelligence technologies to develop intelligent diagnostic tools will accelerate the clinical adoption of EEG biomarkers in DOC diagnosis and prognosis, allowing for more precise evaluations of consciousness states and personalized treatment strategies.
7.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
8.Construction and empirical study of selection system for drug directory of county-level medical community based on multi-criteria decision analysis
Yinan GUO ; Xiuheng YU ; Yuqing XIE ; Shixin XIANG ; Huan LIN ; Youqi LONG ; Yu ZHAO
China Pharmacy 2025;36(8):914-919
OBJECTIVE To explore the construction of selection system for drug directory of the county-level medical community based on multi-criteria decision analysis, and provide decision-making basis for the selection of drug directory of medical community. METHODS Taking county-level medical community in Chongqing as an example,Delphi method and analytic hierarchy process were employed to construct the selection system for drug directory of the county-level medical community. Selected drugs were quantitatively scored based on the constructed index system, and the drug directory was selected according to the drug’s comprehensive score. The implementation effect of the directory was then evaluated through questionnaire surveys one year after the implementation of the directory. RESULTS The expert authority coefficients of the two rounds of consultation were> 0.8, with Kendall’s W values of 0.213 and 0.196, respectively (P<0.001). Finally, the selection system for drug directory of the medical community was determined to include five evaluation dimensions: safety, effectiveness, economy, accessibility, and innovation, along with eight evaluation indicators. In the drug directory selected according to the above method, the proportions of centrally procured drugs, medical insurance drugs, and essential drugs had all increased compared to before the selection; the comprehensive scores of chemical drugs ranged from 50.25 to 96.31 scores, and the proportion of drugs scoring between 70 and 100 scores had increased from 78.06% before selection to 85.82%. Among them, antiparasitic drugs had the highest comprehensive scores, while drugs for the digestive tract and metabolism were the most numerous. The evaluation scores of each indicator and the comprehensive scores of drugs in the drug directory after the selection process increased significantly than before selection (P< 0.05). CONCLUSIONS The selection system for drug directory of the county-level medical community constructed in this study is scientific, objective and operable. This process facilitates the promotion of standardized and unified management of drugs in the medical community.
9.Analysis of clarithromycin potential adverse drug interactions and establishment of refined prescription pre-review rules
Long WANG ; Li ZHANG ; Lingna ZHU ; Guanjun ZHANG ; Jun CHENG
China Pharmacy 2025;36(8):986-990
OBJECTIVE To analyze the potential adverse drug interactions (pADIs) of clarithromycin, and establish refined prescription pre-review rules. METHODS Outpatient prescriptions of clarithromycin in combination with other drugs were collected from January 1, 2024 to June 30, 2024 through hospital information system of the Third People’s Hospital of Bengbu. pADIs were identified and their risk severities were graded according to Lexicomp and Micromedex databases. Then, refined prescription pre- review rules for clarithromycin pADIs-related drugs were established according to the identification and risk level results. RESULTS Among 3 046 clarithromycin combined drug prescriptions, 946 cases of pADIs occurred in 812 prescriptions. There were 6, 415 and 525 cases classified as “contraindicated”,“ major” and “moderate”, respectively. The combination drugs with “contraindicated” levels were tamsulosin, rupatadine, domperidone and ticagrelor, while those with “major” levels were mainly theophylline, dexamethasone and amlodipine. Accordingly, 26 refined rules were established, including 4 items of “warning information→prescription interception”, 11 items of “warning information→prescription double signature” and 11 items of “attention information→prescription approval”. CONCLUSIONS There are “contraindicated” and “major” risks associated with clarithromycin and its combination drugs in the hospital, and refined prescription pre-review rules for clarithromycin combined drug prescription have been established successfully.
10.Therapeutic efficacy of intravenous immunoglobulin in ulcerative colitis
Qian LONG ; Zongkui WANG ; Changqing LI ; Rong ZHANG
Chinese Journal of Blood Transfusion 2025;38(4):522-530
[Objective] To explore the therapeutic effects of intravenous immunoglobulin (IVIG) on dextran sodium sulfate (DSS)-induced ulcerative colitis (UC). [Methods] C57BL/6 mice were randomly assigned to the control group, the DSS group (model) and the DSS+IVIG group (treatment). The DSS group and the DSS+IVIG group received 3% DSS in drinking water to establish the acute UC mouse model. During the experiment, the DSS+IVIG group received IVIG (1 g/kg/2d) via tail vein injection, while the DSS group received equivalent saline via tail vein injection at the same dose and frequency. The symptoms of the mice were observed, body weight changes were recorded, and the disease activity index (DAI) was calculated daily. At the end of the experiment, hematoxylin-eosin (HE) staining was used to observe the pathological changes and inflammatory cell infiltration of colon tissue; Periodic acid-Schiff (PAS) staining was used to quantify the number of goblet cells; Luminex was used to detect the levels of inflammatory-related cytokines (such as TNF-α, IL-6 and MMPs) in colon; western blot and qRT-PCR were respectively used to detect the protein expression and mRNA levels of tight junction proteins (ZO-1, Occludin, Claudin-3). [Results] DSS induced weight loss, diarrhea, bloody stool, increased DAI score, and shortened colon length in mice. Compared with DSS group, after the administration of IVIG, the DAI score was significantly reduced (P<0.001), colon length was increased (P<0.001), infiltration of inflammatory cells and pathological damage were alleviated in colonic mucosa (P<0.001), the number of goblet cells were increased (P<0.05), and the levels of inflammatory-related cytokines TNF-α, IL-6, IL-6R, MMP2, MMP3 and Chitinase3like1 were decreased (all P<0.05). Western blot and qRT - PCR results showed that IVIG significantly up-regulated the protein expression of ZO-1, Occludin and claudin-3 (all P<0.05) and the mRNA levels of ZO-1 and Occludin (all P<0.05). [Conclusion] IVIG has protective effects on colitis by inhibiting the pathological release of inflammatory-related cytokines such as TNF-α, IL-6 and MMPs and restoring the integrity of intestinal barrier.

Result Analysis
Print
Save
E-mail