1.Qingda Granules alleviate brain damage in spontaneously hypertensive rats by modulating the miR-124/STAT3 signaling axis.
Qiaoyan CAI ; Yaoyao XU ; Yuxing LIN ; Haowei LIN ; Junpeng ZHENG ; Weixiang ZHANG ; Chunyu ZHAO ; Yupeng LIN ; Ling ZHANG
Journal of Southern Medical University 2025;45(1):18-26
OBJECTIVES:
To explore the mechanism of Qingda Granules (QDG) for alleviating brain damage in spontaneously hypertensive rats (SHRs).
METHODS:
Twelve 5-week-old SHRs were randomized into SHR control group and SHR+QDG group treated with QDG by gavage at the daily dose of 0.9 g/kg for 12 weeks. The control rats, along with 6 age-matched WKY rats, were treated with saline only. Blood pressure changes of the rats were monitored, and pathologies and neuronal apoptosis in the cerebral cortex were examined with HE staining and TUNEL staining. Cerebral cortical expressions of miR-124 and STAT3 mRNA were detected using RT-qPCR, and the protein expressions of NeuN, STAT3, Bcl-2, Bax, and cleaved caspase-3 were detected with immunohistochemistry and Western blotting. In a HT22 cell model of oxygen and glucose deprivation/reoxygenation (OGD/R), the effects of QDG on cell viability and apoptosis, expressions of miR-124 and STAT3 mRNA, and protein expressions of STAT3, Bcl-2, Bax, and cleaved caspase-3 were evaluated using CCK8 assay, Hoechst 33342 staining, RT-qPCR, and Western blotting.
RESULTS:
Compared with WKY rats, SHRs had significantly elevated systolic blood pressure, diastolic blood pressure and mean arterial pressure with significantly increased neuronal apoptosis in the cerebral cortex, reduced expressions of NeuN, miR-124 and Bcl-2, and enhanced expressions of STAT3, Bax and cleaved caspase-3 (P<0.05). All these changes in the SHRs were significantly ameliorated by treatment with QDG (P<0.05). In the HT22 cell model, QDG treatment obviously reduced OGD/R-induced cell apoptosis, increased the expressions of miR-124 and Bcl-2, and suppressed the elevation of protein expressions of STAT3, Bax and cleaved caspase-3.
CONCLUSIONS
QDG inhibits cerebral cortical neuronal apoptosis and thereby attenuates brain damage in SHR rats by modulating the miR-124/STAT3 signaling axis.
Animals
;
Rats, Inbred SHR
;
MicroRNAs/metabolism*
;
STAT3 Transcription Factor/metabolism*
;
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Rats
;
Apoptosis/drug effects*
;
Rats, Inbred WKY
;
Male
;
Hypertension
2.Expert consensus on orthodontic treatment of protrusive facial deformities.
Jie PAN ; Yun LU ; Anqi LIU ; Xuedong WANG ; Yu WANG ; Shiqiang GONG ; Bing FANG ; Hong HE ; Yuxing BAI ; Lin WANG ; Zuolin JIN ; Weiran LI ; Lili CHEN ; Min HU ; Jinlin SONG ; Yang CAO ; Jun WANG ; Jin FANG ; Jiejun SHI ; Yuxia HOU ; Xudong WANG ; Jing MAO ; Chenchen ZHOU ; Yan LIU ; Yuehua LIU
International Journal of Oral Science 2025;17(1):5-5
Protrusive facial deformities, characterized by the forward displacement of the teeth and/or jaws beyond the normal range, affect a considerable portion of the population. The manifestations and morphological mechanisms of protrusive facial deformities are complex and diverse, requiring orthodontists to possess a high level of theoretical knowledge and practical experience in the relevant orthodontic field. To further optimize the correction of protrusive facial deformities, this consensus proposes that the morphological mechanisms and diagnosis of protrusive facial deformities should be analyzed and judged from multiple dimensions and factors to accurately formulate treatment plans. It emphasizes the use of orthodontic strategies, including jaw growth modification, tooth extraction or non-extraction for anterior teeth retraction, and maxillofacial vertical control. These strategies aim to reduce anterior teeth and lip protrusion, increase chin prominence, harmonize nasolabial and chin-lip relationships, and improve the facial profile of patients with protrusive facial deformities. For severe skeletal protrusive facial deformities, orthodontic-orthognathic combined treatment may be suggested. This consensus summarizes the theoretical knowledge and clinical experience of numerous renowned oral experts nationwide, offering reference strategies for the correction of protrusive facial deformities.
Humans
;
Orthodontics, Corrective/methods*
;
Consensus
;
Malocclusion/therapy*
;
Patient Care Planning
;
Cephalometry
3.Expert consensus on the prevention and treatment of enamel demineralization in orthodontic treatment.
Lunguo XIA ; Chenchen ZHOU ; Peng MEI ; Zuolin JIN ; Hong HE ; Lin WANG ; Yuxing BAI ; Lili CHEN ; Weiran LI ; Jun WANG ; Min HU ; Jinlin SONG ; Yang CAO ; Yuehua LIU ; Benxiang HOU ; Xi WEI ; Lina NIU ; Haixia LU ; Wensheng MA ; Peijun WANG ; Guirong ZHANG ; Jie GUO ; Zhihua LI ; Haiyan LU ; Liling REN ; Linyu XU ; Xiuping WU ; Yanqin LU ; Jiangtian HU ; Lin YUE ; Xu ZHANG ; Bing FANG
International Journal of Oral Science 2025;17(1):13-13
Enamel demineralization, the formation of white spot lesions, is a common issue in clinical orthodontic treatment. The appearance of white spot lesions not only affects the texture and health of dental hard tissues but also impacts the health and aesthetics of teeth after orthodontic treatment. The prevention, diagnosis, and treatment of white spot lesions that occur throughout the orthodontic treatment process involve multiple dental specialties. This expert consensus will focus on providing guiding opinions on the management and prevention of white spot lesions during orthodontic treatment, advocating for proactive prevention, early detection, timely treatment, scientific follow-up, and multidisciplinary management of white spot lesions throughout the orthodontic process, thereby maintaining the dental health of patients during orthodontic treatment.
Humans
;
Consensus
;
Dental Caries/etiology*
;
Dental Enamel/pathology*
;
Tooth Demineralization/etiology*
;
Tooth Remineralization
4.Characteristics of varicella breakthrough cases aged under 14 years in Haizhu District
WANG Ying ; JIANG Mei ; HUA Li ; LIN Yuxing
Journal of Preventive Medicine 2024;36(6):523-526
Objective:
To learn the characteristics of varicella breakthrough cases aged under 14 years in Haizhu District, Guangzhou City and the effects of vaccination on incidence of breakthrough cases, so as to provide the basis for improving varicella vaccination strategy.
Methods:
Data of varicella cases aged under 14 years and vaccination in Haizhu District were collected through Chinese Disease Prevention and Control Information System and Guangdong Provincial Vaccination and Vaccine Circulation Management Information System from 2015 to 2022. Temporal distribution, population distribution and vaccination history of varicella breakthrough cases were descriptively analyzed. Effects of primary immunization age and inoculation interval on breakthrough interval were analyzed using least square method fitting bi-cubic functional equation.
Results:
A total of 4 008 varicella breakthrough cases aged under 14 years were reported in Haizhu District from 2015 to 2022, accounting for 29.16% of all varicella cases. There were mainly 1-dose breakthrough cases, with 3 607 cases accounting for 90.00%. The proportion of 1-dose breakthrough cases showed a downward trend, while the proportion of 2-dose breakthrough cases showed an upward trend (both P<0.05). The epidemics peaked from March to May and from November to January, with a male-to-female ratio of 1.41︰1. The age of onset was mainly at 4 to 6 years, with 1 189 cases accounting for 29.67%. The primary immunization age was mainly ranged from 12 to <24 months, with 2 662 cases accounting for 66.42%. Vaccination of the second dose was concentrated at the age of 48 to <60 months, with 136 cases accounting for 33.92%. The breakthrough interval was relatively long among cases with primary immunization age at 12 to <36 months and inoculation interval within 45 months, with a median breakthrough interval of 25.24 (interquartile range, 20.00) months. Primary immunization age and inoculation interval were negatively correlated with breakthrough interval (P<0.05).
Conclusions
The varicella breakthrough cases aged under 14 years in Haizhu District from 2015 to 2022 were mainly occurred at the beginning of the new term, with a high incidence among preschool children. It is recommended that children receive the first dose of varicella vaccine within 36 months of age and booster within 45 months of interval.
5.Traditional Chinese Medicine Regulates Tumor-associated Macrophages in Colorectal Cancer: A Review
Meixuan GUO ; Yuxing LIN ; Mengyuan CAI ; Aling SHEN ; Wen LU ; Li LI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(22):279-288
Colorectal cancer (CRC), a most common malignant tumor of the digestive tract, is often manifested by abdominal pain, changes in stool quality, blood in the stool, and weight loss, with rising morbidity and mortality year by year. The onset and development of CRC involve a variety of mechanisms, in which tumor microenvironment (TME) and tumor-associated macrophages (TAMs) have received increasing attention. TAMs influence the tumor development via immune escape and angiogenesis promotion and are associated with the prognosis of tumors. In recent years, traditional Chinese medicine (TCM) has been widely researched and applied in the treatment of cancers. Studies have discovered that TCM mainly exerts the therapeutic effects on CRC by inhibiting the proliferation, metastasis, and angiogenesis, promoting the apoptosis, and inducing autophagy of tumor cells and boosting the immune function. TCM as an effective treatment approach can regulate TAMs to inhibit tumor growth. Moreover, the active components and targets of TCM can be taken as new research directions of immunotherapy. This review describes TAMs and their roles in CRC progression and summarizes the molecular targets and mechanisms of different active components, compound prescriptions, and novel preparations of TCM against CRC, aiming to provide a mechanism reference for the clinical treatment of CRC with TCM and give new insights into the in-depth research on the prevention and treatment of CRC-related diseases with TCM.
6.Spatial-temporal graph convolutional neural network for schizophrenia recognition
Xinyi XU ; Bin LI ; Geng ZHU ; Yuxing ZHOU ; Ping LIN ; Xiao'ou LI
Chinese Journal of Medical Physics 2024;41(2):227-232
A spatial-temporal convolutional neural network-based method is proposed for schizophrenia classification.Unlike the mainstream methods that only analyze the temporal frequency features in EEG and ignore the spatial features between brain regions,the model mainly obtains the spatial-frequency features by convolving the adjacency matrix composed of wavelet coherence coefficients between different channels and EEG sequences,and then extracts the temporal-frequency features through one-dimensional temporal convolution.The processed matrix is flattened after multiple convolutions and input to the classification model.Experimental results show that the method has a classification accuracy of 96.32%on the publicly available dataset Zenodo,demonstrating its effectiveness and exhibiting the advantages of fusing temporal-frequency and spatial-frequency features for schizophrenia diagnosis.
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.


Result Analysis
Print
Save
E-mail