1.Troxerutin modulates nuclear factor-kappaB signaling pathway to inhibit brain injury and neuronal apoptosis in cerebral infarction rats
Zhezhe LIU ; Meiqing YU ; Tingting WANG ; Min ZHANG ; Baiyan LI
Chinese Journal of Tissue Engineering Research 2025;29(6):1137-1143
BACKGROUND:Troxerutin has been found to have a significant ameliorative effect on brain disorders,but there are fewer studies on the effects of troxerutin on the treatment of cerebral infarction and on neuronal cells. OBJECTIVE:To investigate the mechanism by which troxerutin regulates nuclear factor-κB signaling pathway to reduce brain injury and neuronal apoptosis in cerebral infarction rats. METHODS:Fifty clean grade rats were randomized into healthy group,model group,and troxerutin+nuclear factor-κB agonist group,troxerutin group,and nuclear factor-κB inhibitor group.Except for the healthy group,all other groups were used to establish a rat model of cerebral infarction by arterial ligation.The healthy and model groups were treated once a day with an equal amount of physiological saline by gavage.The troxerutin+nuclear factor-κB agonist group was intervened with 72 mg/kg troxerutin by gavage+20 mg/kg RANK intraperitoneally.The troxerutin group was treated with 72 mg/kg troxerutin by gavage.The nuclear factor κB inhibitor group was intervened intraperitoneally with 120 mg/kg nuclear factor κB inhibitor pyrrolidine disulfiram.Administration in each group was given once a day for 30 continuous days.Zea-longa was used to detect neurological damage in rats,hematoxylin-eosin staining was used to observe pathological changes,TUNEL was used to detect neuronal apoptosis,and immunoblotting and PCR were used to detect the expression of nuclear factor-κB p65 and nuclear factor-κB p50 at protein and mRNA levels,respectively. RESULTS AND CONCLUSION:Compared with the healthy group,the neurological function score,neuronal apoptosis rate,nuclear factor-κB p65,nuclear factor-κB p50 mRNA and protein expression levels were elevated in the model group(P<0.05).Compared with the model group,the neurological function score,neuronal apoptosis rate,nuclear factor-κB p65 and nuclear factor-κB p50 mRNA and protein expression levels were decreased in the troxerutin+nuclear factor-κB agonist group(P<0.05).Compared with the troxerutin+nuclear factor-κB agonist group,the neurological function score,neuronal apoptosis rate,nuclear factor-κB p65 and nuclear factor-κB p50 mRNA and protein expression levels were reduced in the troxerutin group and nuclear factor-κB inhibitor group(P<0.05).In addition,there was no difference between the troxerutin group and the nuclear factor-κB inhibitor group(P>0.05).In the model group,there was a large number of cytoplasmic vacuolation,obvious edema and necrosis,and a large number of inflammatory cell infiltrations.In the troxerutin+nuclear factor-κB agonist,the swelling of brain tissue was reduced,and reticulate structures and condensed cells were reduced,still with some edema.In the troxerutin group and nuclear factor-κB inhibitor group,brain tissue swelling,neuronal edema degeneration,cytoplasmic vacuolation and neuronal nucleus consolidation were reduced,and the inflammatory cell infiltration was significantly decreased.To conclude,troxrutin can reduce the expression of neurological impairment,inhibit neuronal apoptosis and improve the pathological injury of brain tissue in rats with cerebral infarction,and its mechanism of action may be related to the modulation of nuclear factor-κB expression and related signaling pathways.
2.Pancreatic cancer neuroecology: Current status, mechanisms, and prospect from multi-dimensional perspectives
Shangyou ZHENG ; Honghui JIANG ; Chonghui HU ; Tingting LI ; Tianhao HUANG ; Rihua HE ; Yong JIANG ; Rufu CHEN
Journal of Clinical Hepatology 2025;41(4):611-618
Pancreatic cancer is characterized by nerve invasion and a high mortality rate, and its pathological process depends on the complex interaction network between tumor and the nervous system. Based on the concept of “pancreatic cancer neuroecology”, this article analyzes the mechanism of action of peripheral motor nerve, sensory nerve, and central nerve in tumorigenesis, pain regulation, and cachexia formation and emphasizes the synergistic regulatory role of immune cells, Schwann cells, and extracellular matrix in the microenvironment of perineural invasion. At the same time, this article further elaborates on the metabolic interaction and chemotaxis between neuraxis and tumor, the effect on promoting chemotherapy resistance, and the dynamic relationship between neuroplasticity and tumor adaptability. In clinical practice, this article summarizes the key value of perineural invasion in prognostic evaluation, preoperative evaluation, and the selection of surgical strategy. In addition, this article reviews the basic research advances in the biomarkers and potential targets associated with perineural invasion in pancreatic cancer and points out the limitations of current model and transformation research. In the future, systematically analyzing the nerve-tumor-immune network and targeting its key nodes may provide multi-dimensional strategies and new breakthroughs for the precise intervention of pancreatic cancer, the reversal of drug resistance, and the relief of symptoms.
3.Alanine transferase test results and exploration of threshold adjustment strategies for blood donors in Shenzhen, China
Xin ZHENG ; Yuanye XUE ; Haobiao WANG ; Litiao WU ; Ran LI ; Yingnan DANG ; Tingting CHEN ; Xiaoxuan XU ; Xuezhen ZENG ; Jinfeng ZENG
Chinese Journal of Blood Transfusion 2025;38(4):488-494
[Objective] To conduct a retrospective statistical comparison of alanine aminotransferase (ALT) test values in blood donors prior to blood collection, aiming to analyze the objective characteristics of the population with elevated ALT levels (ALT>50 U/L) and provide reference data for adjusting the screening eligibility threshold for ALT. [Methods] The preliminary ALT screening data of 30 341 blood donor samples collected prior to blood donation from three smart blood donation sites at the Shenzhen Blood Center between 2022 and 2023 were extracted and compared with data from a health examination department of a tertiary hospital in Shenzhen (representing the general population, n=24 906). Both datasets were categorized and statistically described. A retrospective analysis was conducted to examine the associations between ALT test results and factors such as donors' gender, age, ethnicity, donation site, donation season, and frequency of blood donation. [Results] The ALT levels in both blood donors and the general population were non-normally distributed. The 95th percentile of ALT values was calculated as 61.4 U/L (male: 67.8 U/L, female: 39.3 U/L) for blood donors and 58.1 U/L (male: 63.7 U/L, female: 51.2 U/L) for the general population. The non-compliance rates (ALT>50 U/L) were 7.65% (2 321/30 341) in blood donors and 7.08% (1 763/24 906) in the general population. There were significant differences (P<0.05) in the ALT failure rate among blood donors based on gender, age, and donation site, but no significant differences (P>0.05) during the blood donation season. There was no statistically significant difference (P>0.05) in the positive rates of four serological markers (HBsAg, anti HCV, HIV Ag/Ab, anti TP) for blood screening pathogens between ALT unqualified and qualified individuals (2.05% vs 1.5%). If the ALT qualification threshold was raised from 50 U/L to 90 U/L, the non qualification rates of male and female blood donors would decrease from 9.82% (2 074/21 125) to 2.23% (471/21 125) and from 2.70% (249/9 216) to 0.75% (69/9 216), respectively. Among the 154 blood donors who donated blood more than 3 times, 88.31% of the 248 ALT test results were in the range of 50-90 U/L. Among them, 9 cases had ALT>130 U/L, and ALT was converted to qualified in subsequent blood donations. [Conclusion] There are differences in the ALT failure rate among blood donors of different genders and ages, and different blood donation sites and operators can also affect the ALT detection values of blood donors. The vast majority of blood donors with ALT failure are caused by transient and non pathological factors. With the widespread use of blood virus nucleic acid testing, appropriately increasing the ALT qualification threshold for blood donors can expand the qualified population and alleviate the shortage of blood sources, and the risk of blood safety will not increase.
4.Analysis of abnormal ALT in blood donors in five Zang autonomous prefectures of Qinghai Province, China: characteristics and screening strategies
Yingnan DANG ; ; Rong TANG ; Liqin HUANG ; Hailin WU ; Tingting CHEN ; Shengju LI ; Yanli SUN ; Xin ZHENG ; Yanxia LI ; Xianlin YE ; Jinfeng ZENG
Chinese Journal of Blood Transfusion 2025;38(4):502-507
[Objective] To investigate the factors associated with alanine aminotransferase (ALT) abnormalities in multi-ethnic blood donors across five Zang autonomous prefectures in the plateau regions of Qinghai Province, and to provide evidence for ensuring blood safety and formulating screening strategies. [Methods] A retrospective analysis was performed on the ALT abnormal test results of blood donors in the Zang autonomous prefectures of Qinghai from 2022 to 2024. The correlations between ALT levels and factors including gender, age, altitude, and infectious markers were investigated. [Results] The overall ALT unqualified rate among blood donors in this region was 9.01%. Significant differences in ALT levels were observed across genders and age groups (P<0.05). Variations in ALT abnormality rates were also noted among different plateau regions (P<0.05). Overall, ALT values exhibited an increasing trend with rising altitude. The average ALT unqualified rates were 11.19% in Zang donors, 7.96% in Han donors, and 4.79% in donors from other ethnic groups (P<0.05). No statistically significant association was observed between ALT abnormality and the presence of HBV/HCV infectious markers (P>0.05). [Conclusion] In the plateau areas of Qinghai, multi-ethnic blood donors have a relatively high ALT levels and ALT unqualified rates, showing distinct regional characteristics. ALT elevation in voluntary blood donors is related to non-pathological factors such as gender, age, and dietary habits, but not to infectious indicators.
5.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
6.Causal relationship between modifiable factors and joint sports injuries
Tingting DONG ; Tianxin CHEN ; Yan LI ; Sheng ZHANG ; Lei ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(9):1953-1962
BACKGROUND:The causal relationship between modifiable factors such as lifestyle,metabolic characteristics,and nutritional intake and joint sports injuries has been increasingly recognized in clinical studies.However,the exact causal relationship between these modifiable factors and joint sports injuries remains unclear. OBJECTIVE:To investigate the causal relationship between modifiable factors and joint sports injuries using Mendelian randomization to provide a basis for sports injury prevention. METHODS:The GWAS dataset of intervening factors and joint sports injuries was obtained from publicly available data.The causal relationships between lifestyle,metabolic characteristics,nutritional intake,and joint sports injuries were explored using the inverse variance weighting method,the MR-Egger method,and the weighted median method.For sensitivity analyses,Cochran's Q test,MR-Egger regression,leave-one-out method,and MR-PRESSO were used to verify the stability and reliability of the results. RESULTS AND CONCLUSION:(1)In terms of lifestyle,coffee(OR=0.29,95%CI:0.10-0.79,P=0.016),and tea consumption(OR=0.41,95%CI=0.19-0.85,P=0.017)were associated with a decreased risk of ankle and foot joint sports injuries,and coffee consumption(OR=3.31,95%CI=1.02-10.73,P=0.046)was potentially causally associated with an increased risk of shoulder joint sports injuries;and never smoking(OR=0.78,95%CI=0.70-0.87,P=1.49×10-5)was significantly causally associated with a decreased risk of ankle and foot joint sports injuries.(2)In terms of metabolic characteristics,calcium levels(OR=0.88,95%CI=0.79-0.98,P=0.017)were potentially causally associated with a decreased risk of wrist and hand joint sports injuries.(3)In terms of nutritional intake,vitamin A intake(OR=1.08,95%CI:1.02-1.13,P=0.007)was potentially causally associated with increased risk of knee joint sports injury.(4)For the sensitivity analysis,Cochran's Q test showed the existence of heterogeneity(P<0.05),so the random effect model was used for the analysis.MR-Egger regression and MR-PRESSO test did not find evidence of pleiotropy(P>0.05),and the leave-one-out method showed that the results were stable after eliminating single nucleotide polymorphisms one by one.(5)This study preliminarily reveals the effects of modifiable factors,such as lifestyle,metabolic characteristics,and nutritional intake,on the risk of joint sports injuries.It provides valuable research evidence and guidance for the prevention of joint sports injuries.
7.Distribution of Traditional Chinese Medicine Syndrome Elements in Different Risk Populations of Heart Failure Complicated with Type 2 Diabetes: A Retrospective Study Based on Nomogram Model and Factor Analysis
Tingting LI ; Zhipeng YAN ; Yajie FAN ; Wenxiu LI ; Wenyu SHANG ; Yongchun LIANG ; Yiming ZUO ; Yuxin KANG ; Boyu ZHU ; Junping ZHANG
Journal of Traditional Chinese Medicine 2025;66(11):1140-1146
ObjectiveTo analyze the distribution characteristics of traditional Chinese medicine (TCM) syndrome elements in different risk populations of heart failure complicated with type 2 diabetes. MethodsClinical data of 675 type 2 diabetes patients were retrospectively collected. Lasso-multivariate Logistic regression was used to construct a clinical prediction nomogram model. Based on this, 441 non-heart failure patients were divided into a low-risk group (325 cases) and a high-risk group (116 cases) according to the median risk score of heart failure complicated with type 2 diabetes. TCM diagnostic information (four diagnostic methods) was collected for both groups, and factor analysis was applied to summarize the distribution of TCM syndrome elements in different risk populations. ResultsLasso-multivariate Logistic regression analysis identified age, disease duration, coronary heart disease, old myocardial infarction, arrhythmia, absolute neutrophil count, activated partial thromboplastin time, and α-hydroxybutyrate dehydrogenase as independent risk factors for heart failure complicated with type 2 diabetes. These were used as final predictive factors to construct the nomogram model. Model validation results showed that the area under the curve (AUC) of the receiver operating characteristic (ROC) curve for the modeling group and validation group were 0.934 and 0.935, respectively. The Hosmer-Lemeshow test (modeling group P = 0.996, validation group P = 0.121) indicated good model discrimination. Decision curve analysis showed that the curves for All and None crossed in the upper right corner, indicating high clinical utility. The low-risk and high-risk groups each obtained 14 common factors. Preliminary analysis revealed that the main disease elements in the low-risk group were qi deficiency (175 cases, 53.85%), dampness (118 cases, 36.31%), and heat (118 cases, 36.31%), with the primary locations in the spleen (125 cases, 38.46%) and lungs (99 cases, 30.46%). In the high-risk group, the main disease elements were yang deficiency (73 cases, 62.93%), blood stasis (68 cases, 58.62%), and heat (49 cases, 42.24%), with the primary locations in the kidney (84 cases, 72.41%) and heart (70 cases, 60.34%). ConclusionThe overall disease characteristics in different risk populations of type 2 diabetes patients with heart failure are a combination of deficiency and excess, with deficiency being predominant. Deficiency and heat are present throughout. The low-risk population mainly shows qi deficiency with dampness and heat, related to the spleen and lungs. The high-risk population shows yang deficiency with blood stasis and heat, related to the kidneys and heart.
8.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
9.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
10.Baicalein mitigates ferroptosis of neurons after subarachnoid hemorrhage
Ting ZHU ; Tingting YUE ; Yue CUI ; Yue LU ; Wei LI ; Chunhua HANG
Chinese Journal of Tissue Engineering Research 2025;29(1):52-57
BACKGROUND:Ferroptosis is a mode of programmed cell death distinct from apoptosis,necrosis,and other novel cellular deaths,which occurs mainly due to accumulated lipid peroxidation.Ferroptosis has been shown to be involved in the pathological process following subarachnoid hemorrhage.Baicalein,serving as an adept sequestered of iron,evinces its prowess by quelling lipid peroxidative cascades.Nonetheless,the enigma lingers as to whether baicalein possesses the capacity to ameliorate neuronal ferroptosis,elicited in the wake of early brain injury after subarachnoid hemorrhage. OBJECTIVE:To investigate the effect and mechanism of baicalein on neuronal ferroptosis after subarachnoid hemorrhage. METHODS:Primary neuronal cells were extracted from C57BL/6L fetal mice at 16-17 days of gestation.Hemoglobin was used to stimulate primary neuronal cells to simulate an in vitro subarachnoid hemorrhage model.The viability of primary neuronal cells treated with baicalein at concentrations of 5,15,25,50,and 100 μmol/L for 24 hours was detected by CCK-8 assay to determine the optimal concentration of baicalein.Primary neuronal cells were divided into control group,hemoglobin group,and hemoglobin+baicalein group.The levels of reactive oxygen species and malondialdehyde in cells were detected by kits.The mRNA expressions of ferroptosis-related markers PTGS2,SLC7A11,and glutathione peroxidase 4 were detected by RT-PCR.The primary neuronal cells were further divided into control group,SLC7A11 inhibitor Erastin group,hemoglobin group,hemoglobin+baicalein group,and hemoglobin+baicalein+Erastin group.The expression of the ferroptosis related markers SLC7A11 and glutathione peroxidase 4 was detected by western blot assay. RESULTS AND CONCLUSION:(1)Baicalein(25 μmol/L)was selected as the following experimental concentration.(2)Compared with the hemoglobin group,the level of malondialdehyde and the level of reactive oxygen species were significantly decreased(P<0.05)in the hemoglobin+baicalein group.(3)Compared with the hemoglobin group,the mRNA expression of PTGS2 significantly decreased,and the mRNA expression of SLC7A11 and glutathione peroxidase 4 significantly increased(P<0.000 1)in the hemoglobin+baicalein group.(4)SLC7A11 inhibitor Erastin could reverse the baicalin-improved ferroptosis effect to a certain extent(P<0.05).(5)The results showed that baicalein could alleviate the ferroptosis of neuronal cells after subarachnoid hemorrhage through the SLC7A11/GPX4 pathway.

Result Analysis
Print
Save
E-mail