1.The Application of Spatial Resolved Metabolomics in Neurodegenerative Diseases
Lu-Tao XU ; Qian LI ; Shu-Lei HAN ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2025;52(9):2346-2359
The pathogenesis of neurodegenerative diseases (NDDs) is fundamentally linked to complex and profound alterations in metabolic networks within the brain, which exhibit marked spatial heterogeneity. While conventional bulk metabolomics is powerful for detecting global metabolic shifts, it inherently lacks spatial resolution. This methodological limitation hampers the ability to interrogate critical metabolic dysregulation within discrete anatomical brain regions and specific cellular microenvironments, thereby constraining a deeper understanding of the core pathological mechanisms that initiate and drive NDDs. To address this critical gap, spatial metabolomics, with mass spectrometry imaging (MSI) at its core, has emerged as a transformative approach. It uniquely overcomes the limitations of bulk methods by enabling high-resolution, simultaneous detection and precise localization of hundreds to thousands of endogenous molecules—including primary metabolites, complex lipids, neurotransmitters, neuropeptides, and essential metal ions—directly in situ from tissue sections. This powerful capability offers an unprecedented spatial perspective for investigating the intricate and heterogeneous chemical landscape of NDD pathology, opening new avenues for discovery. Accordingly, this review provides a comprehensive overview of the field, beginning with a discussion of the technical features, optimal application scenarios, and current limitations of major MSI platforms. These include the widely adopted matrix-assisted laser desorption/ionization (MALDI)-MSI, the ultra-high-resolution technique of secondary ion mass spectrometry (SIMS)-MSI, and the ambient ionization method of desorption electrospray ionization (DESI)-MSI, along with other emerging technologies. We then highlight the pivotal applications of spatial metabolomics in NDD research, particularly its role in elucidating the profound chemical heterogeneity within distinct pathological microenvironments. These applications include mapping unique molecular signatures around amyloid β‑protein (Aβ) plaques, uncovering the metabolic consequences of neurofibrillary tangles composed of hyperphosphorylated tau protein, and characterizing the lipid and metabolite composition of Lewy bodies. Moreover, we examine how spatial metabolomics contributes to constructing detailed metabolic vulnerability maps across the brain, shedding light on the biochemical factors that render certain neuronal populations and anatomical regions selectively susceptible to degeneration while others remain resilient. Looking beyond current applications, we explore the immense potential of integrating spatial metabolomics with other advanced research methodologies. This includes its combination with three-dimensional brain organoid models to recapitulate disease-relevant metabolic processes, its linkage with multi-organ axis studies to investigate how systemic metabolic health influences neurodegeneration, and its convergence with single-cell and subcellular analyses to achieve unprecedented molecular resolution. In conclusion, this review not only summarizes the current state and critical role of spatial metabolomics in NDD research but also offers a forward-looking perspective on its transformative potential. We envision its continued impact in advancing our fundamental understanding of NDDs and accelerating translation into clinical practice—from the discovery of novel biomarkers for early diagnosis to the development of high-throughput drug screening platforms and the realization of precision medicine for individuals affected by these devastating disorders.
2.Effect and mechanism of Moringa oleifera leaves, seeds, and velamen in improving learning and memory impairments in mice based on transcriptomic and metabolomic.
Zhi-Hao WANG ; Shu-Yi FENG ; Tao LI ; Wan-Ping ZHOU ; Jin-Yu WANG ; Yang LIU ; Lin ZHANG ; Yuan-Yuan XIE ; Xiu-Lan HUANG ; Zhi-Yong LI ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(13):3793-3812
Moringa oleifera, widely utilized in Ayurvedic medicine, is recognized for its leaves, seeds, and velamen possessing traditional effects such as vātahara(wind alleviation), sirovirecaka(brain clearing), and hridya(mental nourishment). This study aims to identify the medicinal part of ■ in the Sārasvata ghee formulation as described in the Bower Manuscript, while investigating the ameliorative effects of different medicinal parts of M. oleifera on learning and memory deficits in mice and elucidating the underlying molecular mechanisms. A total of 144 male ICR mice were randomly assigned to the following groups: control, model(scopolamine hydrobromide, Sco, 2 mg·kg~(-1)), donepezil(donepezil hydrochloride, Don, 3 mg·kg~(-1)), M. oleifera leaf low-, medium-, and high-dose groups(0.5, 1, 2 g·kg~(-1)), M. oleifera seeds low-, medium-, and high-dose groups(0.25, 0.5, 1 g·kg~(-1)), and M. oleifera velamen low-, medium-, and high-dose groups(0.31, 0.62, 1.24 g·kg~(-1)). Learning and memory abilities were assessed using the passive avoidance test and Morris water maze. Nissl and HE staining were employed to examine histopathological changes in the hippocampus. Transcriptomics and targeted metabolomics were used to screen differential genes and metabolites, with MetaboAnalyst 6.0 and O2PLS methods applied to identify key disease-related targets and pathways. RESULTS:: demonstrated that M. oleifera leaf(1 g·kg~(-1)) significantly ameliorated Sco-induced learning and memory deficits, outperforming M. oleifera seeds(0.25 g·kg~(-1)) and M. oleifera velamen(1.24 g·kg~(-1)). This was evidenced by improved behavioral performance, reversal of neuronal damage, and reduced acetylcholinesterase(AChE) activity. Multi-omics analysis revealed that M. oleifera leaf upregulated Tuba1c gene expression through the synaptic vesicle cycle, enhancing glutamate(Glu), dopamine(DA), and acetylcholine(ACh) release via Tuba1c-Glu associations for neuroprotection. M. oleifera seeds targeted the dopaminergic synapse pathway, promoting memory consolidation through Drd2-ACh associations. M. oleifera velamen was associated with the cocaine addiction pathway, modulating dopamine metabolism via Adora2a-DOPAC, with limited relevance to learning and memory. In conclusion, M. oleifera leaf exhibits superior efficacy and mechanistic advantages over M. oleifera seeds and velamen, suggesting that the ■ in the Sārasvata ghee formulation is likely M. oleifera leaf, providing scientific evidence for its identification in ancient texts.
Animals
;
Moringa oleifera/chemistry*
;
Male
;
Mice
;
Seeds/chemistry*
;
Plant Leaves/chemistry*
;
Mice, Inbred ICR
;
Memory Disorders/psychology*
;
Transcriptome/drug effects*
;
Memory/drug effects*
;
Learning/drug effects*
;
Metabolomics
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Maze Learning/drug effects*
3.Research progress on molecular mechanisms of ginsenosides in alleviating acute lung injury.
Han-Yang ZHAO ; Xun-Jiang WANG ; Qiong-Wen XUE ; Bao-Lian XU ; Xu WANG ; Shu-Sheng LAI ; Ming CHEN ; Li YANG ; Zheng-Tao WANG ; Li-Li DING
China Journal of Chinese Materia Medica 2025;50(16):4451-4470
Acute lung injury(ALI) is a critical clinical condition primarily characterized by refractory hypoxemia and infiltration of inflammatory cells in lung tissue, which can progress into a more severe form known as acute respiratory distress syndrome(ARDS). Immune cells and inflammatory cytokines play important roles in the progression of the disease. Due to its unclear pathogenesis and the lack of effective clinical treatments, ALI is associated with a high mortality rate and severely affects patients' quality of life, making the search for effective therapeutic agents particularly urgent. Ginseng Radix et Rhizoma, the dried root of the perennial herb Panax ginseng from the Araliaceae family, contains active ingredients such as saponins and polysaccharides, which possess various pharmacological effects including anti-tumor activity, immune regulation, and metabolic modulation. In recent years, studies have shown that ginsenosides exhibit notable effects in reducing inflammation, ameliorating epithelial and endothelial cell injury, and providing anticoagulant action, indicating their comprehensive role in alleviating lung injury. This review summarizes the pathogenesis of ALI and the molecular mechanisms through which ginsenosides act at different stages of ALI development. The aim is to provide a scientific reference for the development of ginsenoside-based drugs targeting ALI, as well as a theoretical basis for the clinical application of Ginseng Radix et Rhizoma in the treatment of ALI.
Ginsenosides/pharmacology*
;
Humans
;
Acute Lung Injury/immunology*
;
Animals
;
Panax/chemistry*
;
Drugs, Chinese Herbal
4.Risk factors for recurrent plastic bronchitis in children with Mycoplasma pneumoniae pneumonia.
Wan-Yi LI ; Shu-Ying WANG ; Hai-Zhen WANG ; Qi-Jun ZHAO ; Tao ZHANG ; Wen-Yuan WANG ; Yuan HUO ; Yong-Jun WANG
Chinese Journal of Contemporary Pediatrics 2025;27(10):1220-1226
OBJECTIVES:
To identify risk factors for recurrent plastic bronchitis (PB) among children with Mycoplasma pneumoniae pneumonia (MPP).
METHODS:
The clinical data of children with MPP complicated by PB who underwent bronchoscopy at Gansu Province Maternity and Child Health Hospital between July 2023 and January 2025 were retrospectively analyzed. Patients were grouped into a single-episode PB group and a recurrent PB group according to the number of PB episodes. Multivariable logistic regression was used to identify risk factors for recurrent PB. Receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic performance of individual and combined predictors.
RESULTS:
A total of 264 children were included; 188 (71.2%) had a single episode of PB and 76 (28.8%) had recurrent PB. Multivariable logistic regression analysis showed that decreased serum albumin, atelectasis, and fever persisting beyond 72 hours after the initial bronchoscopy were significantly associated with recurrent PB (all P<0.05). The combination of these predictors yielded a sensitivity of 82.9%, specificity of 61.7%, and an area under the ROC curve of 0.777 (95%CI: 0.714-0.839), outperforming any single predictor (P<0.05).
CONCLUSIONS
In children with MPP complicated by PB, decreased serum albumin, the presence of atelectasis, and fever persisting beyond 72 hours after the initial bronchoscopy are associated with an increased risk of PB recurrence. In such cases, early repeat or multiple bronchoscopic interventions should be considered.
Humans
;
Pneumonia, Mycoplasma/complications*
;
Male
;
Female
;
Risk Factors
;
Recurrence
;
Child, Preschool
;
Bronchitis/etiology*
;
Child
;
Retrospective Studies
;
Logistic Models
;
Infant
;
ROC Curve
;
Adolescent
5.The Molecular Mechanism of HCQ Reversing Immune Mediators Dysregulation in Severe Infection after Chemotherapy in Acute Myeloid Leukemia and Inducing Programmed Death of Leukemia Cells.
Qing-Lin XU ; Yan-Quan LIU ; He-Hui ZHANG ; Fen WANG ; Zuo-Tao LI ; Zhi-Min YAN ; Shu-Juan CHEN ; Hong-Quan ZHU
Journal of Experimental Hematology 2025;33(4):931-938
OBJECTIVE:
To explore the effects of hydroxychloroquine (HCQ) on immune mediators dysregulation in severe infection after chemotherapy in acute myeloid leukemia (AML) and its molecular mechanism.
METHODS:
Bone marrow or peripheral blood samples of 36 AML patients with severe infection (AML-SI) and 29 AML patients without infection (AML-NI) after chemotherapy were collected from the First Affiliated Hospital of Gannan Medical University from August 2022 to June 2023. In addition, the peripheral blood of 21 healthy subjects from the same period in our hospital was selected as the control group. The mRNA expressions of CXCL12, CXCR4 and CXCR7 were detected by RT-qPCR technology, and the levels of IL-6, IL-8 and TNF-α were detected by ELISA. Leukemia-derived THP-1 cells were selected and constructed as AML disease model. At the same time, bone marrow mesenchymal stem cells (BM-MSCs) from AML-SI patients were co-cultured with THP-1 cells and divided into Mono group and Co-culture group. THP-1 cells were treated with different concentration gradients of HCQ. The cell proliferation activity was subsequently detected by CCK-8 method and apoptosis was detected by Annexin V/PI double staining flow cytometry. ELISA was used to detect the changes of IL-6, IL-8 and TNF-α levels in the supernatant of the cell co-culture system, RT-qPCR was used to detect the mRNA expression changes of the core members of the CXCL12-CXCR4/7 regulatory axis, and Western blot was used to detect the expressions of apoptosis regulatory molecules and related signaling pathway proteins.
RESULTS:
CXCL12, CXCR4, CXCR7, as well as IL-6, IL-8, and TNF-α were all abnormally increased in AML patients, and the increases were more significant in AML-SI patients (P <0.01). Furthermore, there were statistically significant differences between AML-NI patients and AML-SI patients (all P <0.05). HCQ could inhibit the proliferation and induce the apoptosis of THP-1 cells, but the low concentration of HCQ had no significant effect on the killing of THP-1 cells. When THP-1 cells were co-cultured with BM-MSCs of AML patients, the levels of IL-6, IL-8 and TNF-α in the supernatance of Co-culture group were significantly higher than those of Mono group (all P <0.01). After HCQ intervention, the levels of IL-6, IL-8 and TNF-α in cell culture supernatant of Mono group were significantly decreased compared with those before intervention (all P <0.01). Similarly, those of Co-culture group were also significantly decreased (all P <0.001). However, the expression of the core members of the CXCL12-CXCR4/7 regulatory axis was weakly affected by HCQ. HCQ could up-regulate the expression of pro-apoptotic protein Bax, down-regulate the expression of anti-apoptotic protein Bcl-2, as well as simultaneously promote the hydrolytic activation of Caspase-3 when inhibiting the activation level of TLR4/NF-κB pathway, then induce the programmed death of THP-1 cells after intervention.
CONCLUSION
The core members of CXCL12-CXCR4/7 axis and related cytokines may be important mediators of severe infectious immune disorders in AML patients. HCQ can inhibit cytokine levels to reverse immune mediators dysregulation and suppress malignant biological characteristics of leukemia cells. The mechanisms may be related to regulating the expression of Bcl-2 family proteins, hydrolytically activating Caspase-3 and inhibiting the activation of TLR4/NF-κB signaling pathway.
Humans
;
Leukemia, Myeloid, Acute/immunology*
;
Hydroxychloroquine/pharmacology*
;
Receptors, CXCR4/metabolism*
;
Apoptosis/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Chemokine CXCL12/metabolism*
;
Interleukin-8/metabolism*
;
Interleukin-6/metabolism*
;
Receptors, CXCR/metabolism*
;
Mesenchymal Stem Cells
;
THP-1 Cells
6.Clinical efficacy of microscopic varicocelectomy versus laparoscopic varicocelectomy in the treatment of varicocele with male infertility.
Yu PAN ; Ling FU ; Xiao-Jing GUO ; Wen-Xin LI ; Lin QIAN ; Lei YU ; Hong-Qiang WANG ; Kai-Shu ZHANG ; Shen-Qian LI ; Qiang LI ; Pei-Tao WANG ; Han-Shu WANG ; Tao JING
National Journal of Andrology 2025;31(4):333-337
OBJECTIVE:
To compare the clinical efficacy between microscopic varicocelectomy and laparoscopic varicocelectomy in the treatment of varicocele(VC)with male infertility.
METHODS:
A total of 307 patients who were diagnosed with VC complicated with male infertility and admitted to the Affiliated Hospital of Qingdao University from October 2018 to October 2022 were recruited for retrospective analysis. The patients were divided into the microscopic group (180 cases) and laparoscopic group (127 cases) according to the surgery method. The pre- and postoperative clinical data of these two groups were analyzed, including the degree of dilatation and reflux time of internal spermatic vein,hemodynamic parameters of testicular capsular artery,proportion of progressive motility spermatozoa (PR), concentration of spermatozoa, proportion of normal morphology sperm,the pregnancy outcome of spouses and the incidence of complications related with surgery within 2 years postoperatively.
RESULTS:
All the surgeries for the 307 patients in this study were successful. There was no significant difference in operation time, hospitalization time and management expenses between the microscopic group and the laparoscopic group (P>0.05). Compared to the patients in laparoscopic group, the patients in the microscopic group received a better improvement in venous diameter, reflux time of spermatic veins and hemodynamic parameters of testicular capsular artery (P<0.05). Moreover, the semen analysis showed that the PR, spermatozoa concentration and proportion of normal morphology sperm in the microscopic group were also obviously increased than those in the laparoscopic group (P<0.05). During the 2-year follow-up period, the conception rate of spouses in the microscopic group was 67.2%, while only 47.2% in the laparoscopic group, in which the difference was statistically significant (P<0.05). Besides, the time-to-pregnancy ( TTP ) within 2 years postoperatively in the microscopic group was significantly shorter than that in the laparoscopic group(P<0.05). Meanwhile, the incidence of adverse pregnancy outcomes in the microscopic group was also significantly lower than that in the laparoscopic group (P<0.05). It is worth mentioned that the spontaneous conception rate of spouses with successful pregnancy in the microscopic group was also significantly higher than that in the laparoscopic group (P<0.05). Severe complication such as testicular atrophy, bleeding and infection did not appear in both of two groups. However, the incidences of testicular hydrocele and recurrence of VC postoperatively in the laparoscopic group were significantly higher than those in the microscopic group (P<0.05).
CONCLUSION
Both microscopic varicocelectomy and laparoscopic varicocelectomy can be applied to the management of VC combined with male infertility. But microscopic varicocelectomy showed better clinical efficacy in improving the testicular hemodynamic parameters, semen quality, pregnancy outcome and postoperative complications, which is worthy of further clinical applications.
Humans
;
Male
;
Varicocele/complications*
;
Laparoscopy
;
Infertility, Male/etiology*
;
Retrospective Studies
;
Adult
;
Microsurgery
;
Treatment Outcome
;
Pregnancy
;
Female
7.Ventral Hippocampal CA1 GADD45B Regulates Susceptibility to Social Stress by Influencing NMDA Receptor-Mediated Synaptic Plasticity.
Mengbing HUANG ; Jian BAO ; Xiaoqing TAO ; Yifan NIU ; Kaiwei LI ; Ji WANG ; Xiaokang GONG ; Rong YANG ; Yuran GUI ; Hongyan ZHOU ; Yiyuan XIA ; Youhua YANG ; Binlian SUN ; Wei LIU ; Xiji SHU
Neuroscience Bulletin 2025;41(3):406-420
Growth arrest DNA damage-inducible protein 45 β (GADD45B) has been reported to be a regulatory factor for active DNA demethylation and is implicated in the modulation of synaptic plasticity and chronic stress-related psychopathological processes. However, its precise role and mechanism of action in stress susceptibility remain elusive. In this study, we found a significant reduction in GADD45B expression specifically in the ventral, but not the dorsal hippocampal CA1 (dCA1) of stress-susceptible mice. Furthermore, we demonstrated that GADD45B negatively regulates susceptibility to social stress and NMDA receptor-dependent long-term potentiation (LTP) in the ventral hippocampal CA1 (vCA1). Importantly, through pharmacological inhibition using the NMDA receptor antagonist MK801, we provided further evidence supporting the hypothesis that GADD45B potentially modulates susceptibility to social stress by influencing NMDA receptor-mediated LTP. Collectively, these results suggested that modulation of NMDA receptor-mediated synaptic plasticity is a pivotal mechanism underlying the regulation of susceptibility to social stress by GADD45B.
Animals
;
Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors*
;
CA1 Region, Hippocampal/drug effects*
;
Male
;
Stress, Psychological/physiopathology*
;
Mice
;
Neuronal Plasticity/drug effects*
;
Long-Term Potentiation/drug effects*
;
Mice, Inbred C57BL
;
Antigens, Differentiation/metabolism*
;
Dizocilpine Maleate/pharmacology*
;
Excitatory Amino Acid Antagonists/pharmacology*
;
GADD45 Proteins
8.Histaminergic Innervation of the Ventral Anterior Thalamic Nucleus Alleviates Motor Deficits in a 6-OHDA-Induced Rat Model of Parkinson's Disease.
Han-Ting XU ; Xiao-Ya XI ; Shuang ZHOU ; Yun-Yong XIE ; Zhi-San CUI ; Bei-Bei ZHANG ; Shu-Tao XIE ; Hong-Zhao LI ; Qi-Peng ZHANG ; Yang PAN ; Xiao-Yang ZHANG ; Jing-Ning ZHU
Neuroscience Bulletin 2025;41(4):551-568
The ventral anterior (VA) nucleus of the thalamus is a major target of the basal ganglia and is closely associated with the pathogenesis of Parkinson's disease (PD). Notably, the VA receives direct innervation from the hypothalamic histaminergic system. However, its role in PD remains unknown. Here, we assessed the contribution of histamine to VA neuronal activity and PD motor deficits. Functional magnetic resonance imaging showed reduced VA activity in PD patients. Optogenetic activation of VA neurons or histaminergic afferents significantly alleviated motor deficits in 6-OHDA-induced PD rats. Furthermore, histamine excited VA neurons via H1 and H2 receptors and their coupled hyperpolarization-activated cyclic nucleotide-gated channels, inward-rectifier K+ channels, or Ca2+-activated K+ channels. These results demonstrate that histaminergic afferents actively compensate for Parkinsonian motor deficits by biasing VA activity. These findings suggest that targeting VA histamine receptors and downstream ion channels may be a potential therapeutic strategy for PD motor dysfunction.
Animals
;
Histamine/metabolism*
;
Male
;
Oxidopamine/toxicity*
;
Rats
;
Ventral Thalamic Nuclei/physiopathology*
;
Rats, Sprague-Dawley
;
Disease Models, Animal
;
Parkinson Disease/metabolism*
;
Neurons/physiology*
;
Humans
;
Optogenetics
9.Effect of cholesterol on distribution, cell uptake, and protein corona of lipid microspheres at sites of cardiovascular inflammatory injury.
Lingyan LI ; Xingjie WU ; Qianqian GUO ; Yu'e WANG ; Zhiyong HE ; Guangqiong ZHANG ; Shaobo LIU ; Liping SHU ; Babu GAJENDRAN ; Ying CHEN ; Xiangchun SHEN ; Ling TAO
Journal of Pharmaceutical Analysis 2025;15(7):101182-101182
Cholesterol (CH) plays a crucial role in enhancing the membrane stability of drug delivery systems (DDS). However, its association with conditions such as hyperlipidemia often leads to criticism, overshadowing its influence on the biological effects of formulations. In this study, we reevaluated the delivery effect of CH using widely applied lipid microspheres (LM) as a model DDS. We conducted comprehensive investigations into the impact of CH on the distribution, cell uptake, and protein corona (PC) of LM at sites of cardiovascular inflammatory injury. The results demonstrated that moderate CH promoted the accumulation of LM at inflamed cardiac and vascular sites without exacerbating damage while partially mitigating pathological damage. Then, the slow cellular uptake rate observed for CH@LM contributed to a prolonged duration of drug efficacy. Network pharmacology and molecular docking analyses revealed that CH depended on LM and exerted its biological effects by modulating peroxisome proliferator-activated receptor gamma (PPAR-γ) expression in vascular endothelial cells and estrogen receptor alpha (ERα) protein levels in myocardial cells, thereby enhancing LM uptake at cardiovascular inflammation sites. Proteomics analysis unveiled a serum adsorption pattern for CH@LM under inflammatory conditions showing significant adsorption with CH metabolism-related apolipoprotein family members such as apolipoprotein A-V (Apoa5); this may be a major contributing factor to their prolonged circulation in vivo and explains why CH enhances the distribution of LM at cardiovascular inflammatory injury sites. It should be noted that changes in cell types and physiological environments can also influence the biological behavior of formulations. The findings enhance the conceptualization of CH and LM delivery, providing novel strategies for investigating prescription factors' bioactivity.
10.Three-dimensional kinematic analysis can improve the efficacy of acupoint selection for post-stroke patients with upper limb spastic paresis: A randomized controlled trial.
Xin-Yun HUANG ; Ou-Ping LIAO ; Shu-Yun JIANG ; Ji-Ming TAO ; Yang LI ; Xiao-Ying LU ; Yi-Ying LI ; Ci WANG ; Jing LI ; Xiao-Peng MA
Journal of Integrative Medicine 2025;23(1):15-24
BACKGROUND:
China is seeing a growing demand for rehabilitation treatments for post-stroke upper limb spastic paresis (PSSP-UL). Although acupuncture is known to be effective for PSSP-UL, there is room to enhance its efficacy.
OBJECTIVE:
This study explored a semi-personalized acupuncture approach for PSSP-UL that used three-dimensional kinematic analysis (3DKA) results to select additional acupoints, and investigated the feasibility, efficacy and safety of this approach.
DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS:
This single-blind, single-center, randomized, controlled trial involved 74 participants who experienced a first-ever ischemic or hemorrhagic stroke with spastic upper limb paresis. The participants were then randomly assigned to the intervention group or the control group in a 1:1 ratio. Both groups received conventional treatments and acupuncture treatment 5 days a week for 4 weeks. The main acupoints in both groups were the same, while participants in the intervention group received additional acupoints selected on the basis of 3DKA results. Follow-up assessments were conducted for 8 weeks after the treatment.
MAIN OUTCOME MEASURES:
The primary outcome was the Fugl-Meyer Assessment for Upper Extremity (FMA-UE) response rate (≥ 6-point change) at week 4. Secondary outcomes included changes in motor function (FMA-UE), Brunnstrom recovery stage (BRS), manual muscle test (MMT), spasticity (Modified Ashworth Scale, MAS), and activities of daily life (Modified Barthel Index, MBI) at week 4 and week 12.
RESULTS:
Sixty-four participants completed the trial and underwent analyses. Compared with control group, the intervention group exhibited a significantly higher FMA-UE response rate at week 4 (χ2 = 5.479, P = 0.019) and greater improvements in FMA-UE at both week 4 and week 12 (both P < 0.001). The intervention group also showed bigger improvements from baseline in the MMT grades for shoulder adduction and elbow flexion at weeks 4 and 12 as well as thumb adduction at week 4 (P = 0.007, P = 0.049, P = 0.019, P = 0.008, P = 0.029, respectively). The intervention group showed a better change in the MBI at both week 4 and week 12 (P = 0.004 and P = 0.010, respectively). Although the intervention group had a higher BRS for the hand at week 12 (P = 0.041), no intergroup differences were observed at week 4 (all P > 0.05). The two groups showed no differences in MAS grades as well as in BRS for the arm at weeks 4 and 12 (all P > 0.05).
CONCLUSION:
Semi-personalized acupuncture prescription based on 3DKA results significantly improved motor function, muscle strength, and activities of daily living in patients with PSSP-UL.
TRIAL REGISTRATION
Chinese Clinical Trial Registry ChiCTR2200056216. Please cite this article as: Huang XY, Liao OP, Jiang SY, Tao JM, Li Y, Lu XY, Li YY, Wang C, Li J, Ma XP. Three-dimensional kinematic analysis can improve the efficacy of acupoint selection for post-stroke patients with upper limb spastic paresis: A randomized controlled trial. J Integr Med. 2025; 23(1): 15-24.
Humans
;
Male
;
Female
;
Middle Aged
;
Acupuncture Points
;
Upper Extremity/physiopathology*
;
Biomechanical Phenomena
;
Single-Blind Method
;
Aged
;
Stroke/therapy*
;
Acupuncture Therapy/methods*
;
Stroke Rehabilitation/methods*
;
Adult
;
Muscle Spasticity/therapy*
;
Paresis/physiopathology*
;
Treatment Outcome

Result Analysis
Print
Save
E-mail