1.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
2.The Adoption of Non-invasive Photobiomodulation in The Treatment of Epilepsy
Ao-Yun LI ; Zhan-Chuang LU ; Li CAO ; Si CHEN ; Hui JIANG ; Chang-Chun CHEN ; Lei CHEN
Progress in Biochemistry and Biophysics 2025;52(4):882-898
Epilepsy is a chronic neurological disease caused by abnormal synchronous discharge of the brain, which is characterized by recurrent and transient neurological abnormalities, mainly manifested as loss of consciousness and limb convulsions, and can occur in people of all ages. At present, anti-epileptic drugs (AEDs) are still the main means of treatment, but their efficacy is limited by the problem of drug resistance, and long-term use can cause serious side effects, such as cognitive dysfunction and vital organ damage. Although surgical resection of epileptic lesions has achieved certain results in some patients, the high cost and potential risk of neurological damage limit its scope of application. Therefore, the development of safe, accurate and personalized non-invasive treatment strategies has become one of the key directions of epilepsy research. In recent years, photobiomodulation (PBM) has gained significant attention as a promising non-invasive therapeutic approach. PBM uses light of specific wavelengths to penetrate tissues and interact with photosensitive molecules within cells, thereby modulating cellular metabolic processes. Research has shown that PBM can enhance mitochondrial function, promote ATP production, improve meningeal lymphatic drainage, reduce neuroinflammation, and stimulate the growth of neurons and synapses. These biological effects suggest that PBM not only holds the potential to reduce the frequency of seizures but also to improve the metabolic state and network function of neurons, providing a novel therapeutic avenue for epilepsy treatment. Compared to traditional treatment methods, PBM is non-invasive and avoids the risks associated with surgical interventions. Its low risk of significant side effects makes it particularly suitable for patients with drug-resistant epilepsy, offering new therapeutic options for those who have not responded to conventional treatments. Furthermore, PBM’s multi-target mechanism enables it to address a variety of complex etiologies of epilepsy, demonstrating its potential in precision medicine. In contrast to therapies targeting a single pathological mechanism, PBM’s multifaceted approach makes it highly adaptable to different types of epilepsy, positioning it as a promising supplementary or alternative treatment. Although animal studies and preliminary clinical trials have shown positive outcomes with PBM, its clinical application remains in the exploratory phase. Future research should aim to elucidate the precise mechanisms of PBM, optimize light parameters, such as wavelength, dose, and frequency, and investigate potential synergistic effects with other therapeutic modalities. These efforts will be crucial for enhancing the therapeutic efficacy of PBM and ensuring its safety and consistency in clinical settings. This review summarizes the types of epilepsy, diagnostic biomarkers, the advantages of PBM, and its mechanisms and potential applications in epilepsy treatment. The unique value of PBM lies not only in its multi-target therapeutic effects but also in its adaptability to the diverse etiologies of epilepsy. The combination of PBM with traditional treatments, such as pharmacotherapy and neuroregulatory techniques, holds promise for developing a more comprehensive and multidimensional treatment strategy, ultimately alleviating the treatment burden on patients. PBM has also shown beneficial effects on neural network plasticity in various neurodegenerative diseases. The dynamic remodeling of neural networks plays a critical role in the pathogenesis and treatment of epilepsy, and PBM’s multi-target mechanism may promote brain function recovery by facilitating neural network remodeling. In this context, optimizing optical parameters remains a key area of research. By adjusting parameters such as wavelength, dose, and frequency, researchers aim to further enhance the therapeutic effects of PBM while maintaining its safety and stability. Looking forward, interdisciplinary collaboration, particularly in the fields of neuroscience, optical engineering, and clinical medicine, will drive the development of PBM technology and facilitate its transition from laboratory research to clinical application. With the advancement of portable devices, PBM is expected to provide safer and more effective treatments for epilepsy patients and make a significant contribution to personalized medicine, positioning it as a critical component of precision therapeutic strategies.
3.Clinical Randomized Controlled Trial of Traditional Chinese Medicine Compound Shenlong Decoction Granules in Treatment of Idiopathic Pulmonary Fibrosis
Qi SI ; Ningzi ZANG ; Mei WANG ; Weidong ZHENG ; Chuang LIU ; Yongming LIU ; Haoyang ZHANG ; Zhongxue ZHAO ; Jiyu ZOU ; Jingze LI ; Lijian PANG ; Xiaodong LYU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):237-245
ObjectiveTo assess the therapeutic effectiveness and safety of the traditional Chinese medicine compound Shenlong decoction in addressing the symptoms of pulmonary deficiency and stasis in patients with idiopathic pulmonary fibrosis (IPF). MethodsSixty eligible patients with lung deficiency and collateral stasis syndrome of IPF were randomly assigned to the observation (30 patients) and control groups (30 patients). All patients underwent standard Western medical therapy. Additionally,the observation group received Shenlong decoction granules,while the control group received a placebo. Both treatments were packaged in four doses of 10.5 g each,taken twice daily for three months. The indexes of the patients during the treatment cycle were observed,and the main indexes include traditional Chinese medicine (TCM) syndrome scores and 6 min walk test (6MWT). The secondary indexes include pulmonary function test [actual value/expected value of total lung volume (TLC%),actual value/expected value of vital capacity(FVC%),actual/predicted diffusing capacity of the lung for carbon monoxide(DLCO%),actual/predicted forced expiratory volume in one second (FEV1%),and FEV1/ forced vital capacity (FVC)],blood gas analysis [arterial blood diathesis partial pressure of oxygen (PaO2),partial pressure of carbon dioxide (PaCO2),and arterial oxygen saturation (SaO2)],serum inflammatory factors [transforming growth factor-β1 (TGF-β1),interleukin-4 (IL-4),interleukin-13 (IL-13),interleukin-12 (IL-12),and gamma-interferon (IFN-γ)],and quality of survival evaluation [St George's Respiratory Questionnaire (SGRQ) score]. The patients' clinical manifestations were determined at the end of the treatment, and the occurrence of adverse events was recorded. ResultsA total of 53 patients completed the study,comprising 27 in the control group and 26 in the observation group. Upon completion of the treatment period,the control group achieved a total effective rate of 33.33% (9/27),whereas the observation group demonstrated a total effective rate of 53.85% (14/26),which was statistically superior to the control group (χ2=4.034,P<0.05). After the treatment,the TCM syndrome scores,6MWT,DLCO%,FEV1%,PaO2,PaCO2,TGF-β1,IL-4,IL-13,IL-12,and IFN-γ in the two groups were all significantly improved (P<0.01). Compared with those in the control group after treatment at the same period,the TCM syndrome scores,6MWT,PaO2,and PaCO2 were significantly improved in the observation group after 60 days and 90 days of medication (P<0.01). Three months after the end of medication,the SGRQ score in the observation group showed significant improvement when compared to that in the control group (P<0.05),and no severe adverse events were reported during the follow-up period. ConclusionCompound Shenlong decoction can alleviate clinical symptoms such as shortness of breath and wheezing in patients with lung deficiency and collateral stasis syndrome of IPF,enhance exercise tolerance,improve the quality of life,and have certain potential advantages in improving pulmonary function.
4.Clinical Randomized Controlled Trial of Traditional Chinese Medicine Compound Shenlong Decoction Granules in Treatment of Idiopathic Pulmonary Fibrosis
Qi SI ; Ningzi ZANG ; Mei WANG ; Weidong ZHENG ; Chuang LIU ; Yongming LIU ; Haoyang ZHANG ; Zhongxue ZHAO ; Jiyu ZOU ; Jingze LI ; Lijian PANG ; Xiaodong LYU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):237-245
ObjectiveTo assess the therapeutic effectiveness and safety of the traditional Chinese medicine compound Shenlong decoction in addressing the symptoms of pulmonary deficiency and stasis in patients with idiopathic pulmonary fibrosis (IPF). MethodsSixty eligible patients with lung deficiency and collateral stasis syndrome of IPF were randomly assigned to the observation (30 patients) and control groups (30 patients). All patients underwent standard Western medical therapy. Additionally,the observation group received Shenlong decoction granules,while the control group received a placebo. Both treatments were packaged in four doses of 10.5 g each,taken twice daily for three months. The indexes of the patients during the treatment cycle were observed,and the main indexes include traditional Chinese medicine (TCM) syndrome scores and 6 min walk test (6MWT). The secondary indexes include pulmonary function test [actual value/expected value of total lung volume (TLC%),actual value/expected value of vital capacity(FVC%),actual/predicted diffusing capacity of the lung for carbon monoxide(DLCO%),actual/predicted forced expiratory volume in one second (FEV1%),and FEV1/ forced vital capacity (FVC)],blood gas analysis [arterial blood diathesis partial pressure of oxygen (PaO2),partial pressure of carbon dioxide (PaCO2),and arterial oxygen saturation (SaO2)],serum inflammatory factors [transforming growth factor-β1 (TGF-β1),interleukin-4 (IL-4),interleukin-13 (IL-13),interleukin-12 (IL-12),and gamma-interferon (IFN-γ)],and quality of survival evaluation [St George's Respiratory Questionnaire (SGRQ) score]. The patients' clinical manifestations were determined at the end of the treatment, and the occurrence of adverse events was recorded. ResultsA total of 53 patients completed the study,comprising 27 in the control group and 26 in the observation group. Upon completion of the treatment period,the control group achieved a total effective rate of 33.33% (9/27),whereas the observation group demonstrated a total effective rate of 53.85% (14/26),which was statistically superior to the control group (χ2=4.034,P<0.05). After the treatment,the TCM syndrome scores,6MWT,DLCO%,FEV1%,PaO2,PaCO2,TGF-β1,IL-4,IL-13,IL-12,and IFN-γ in the two groups were all significantly improved (P<0.01). Compared with those in the control group after treatment at the same period,the TCM syndrome scores,6MWT,PaO2,and PaCO2 were significantly improved in the observation group after 60 days and 90 days of medication (P<0.01). Three months after the end of medication,the SGRQ score in the observation group showed significant improvement when compared to that in the control group (P<0.05),and no severe adverse events were reported during the follow-up period. ConclusionCompound Shenlong decoction can alleviate clinical symptoms such as shortness of breath and wheezing in patients with lung deficiency and collateral stasis syndrome of IPF,enhance exercise tolerance,improve the quality of life,and have certain potential advantages in improving pulmonary function.
5.Association between negative life events and smartphone addiction among middle school students
Chinese Journal of School Health 2025;46(5):619-623
Objective:
To explore the association between negative life events and smartphone addiction among middle school students, so as to provide theoretical support and practical guidance for prevention and intervention of smartphone addiction among middle school students.
Methods:
Using cluster sampling, 8 890 students were selected to survey from 27 junior high schools and 3 senior high schools in a district of Shenzhen in 2022 (baseline) and 2023 (followup). Data were collected through selfresigned questionnaires on basic information, the Smartphone Addiction Scale-Short Version, and the Adolescent Selfrating Life Events Checklist. Mixedeffects models were employed to analyze the association.
Results:
Compared to 2022, the punishment scores of middle school students in 2023 [1.00 (0.00, 6.00) and 1.00 (0.00, 6.00)] decreased (Z=4.27), while the scores of interpersonal stress, learning stress and adaptation [4.00(0.00, 8.00), 4.00(0.00, 8.00); 4.00(1.00, 8.00), 5.00(2.00, 9.00); 2.00 (0.00, 6.00), 3.00 (0.00, 7.00)] increased (Z=-3.04, -8.36, -6.80) (P<0.01). Mixedeffects models revealed a positive doseresponse relationship between negative life events and smartphone addiction (OR=1.08-1.17, P<0.01). Stepwise regression showed independent positive effects of interpersonal stress (OR=1.05), academic stress (OR=1.03), and adaptation stress (OR=1.11) on smartphone addiction (P<0.01). Subgroup analysis of nonaddicted students in 2022 confirmed persistent associations for academic stress (OR=1.03) and adaptation (OR=1.07) (P<0.01).
Conclusion
Negative life events exhibit a positive doseresponse relationship with smartphone addiction, particularly interpersonal stress, academic stress, and adaptationrelated events.
6.Longitudinal association between only-child status and smartphone addiction in middle school students
Chinese Journal of School Health 2025;46(5):630-633
Objective:
To explore the longitudinal association between only-child status and smartphone addiction among middle school students, so as to provide a basis for establishing family intervention measures for smartphone addiction in middle school students.
Methods:
In October 2022 and October 2023, a preliminary survey and follow-up were conducted among 8 759 middle and high school students from 30 schools in a district of Shenzhen. A self-designed questionnaire was used to determine whether the students were the only-child, and the Chinese Version of the Smartphone Addiction Scale-Short Version (C-SAS-SV) was utilized to assess the students smartphone addiction status. A multilevel mixed-effects model and subgroup analysis were applied to examine the association between only-child status and smartphone addiction among middle school students.
Results:
During 2022 to 2023, the prevalence of smartphone addiction in the cohort of middle school students increased from 24.1% to 25.2%. Compared with only-child, non-only child were more likely to be addicted to smartphones (adjusted model: OR =1.2, 95% CI =1.1-1.4) and also scored higher on smartphone addiction (adjusted model: β =0.9, 95% CI =0.2-1.5)( P <0.05). Subgroup analysis further revealed that compared to baseline, non-only child demonstrated an increased prevalence of smartphone addiction (adjusted model: OR = 1.2 , 95% CI =1.0-1.5) and higher addiction scores (adjusted model: β =0.8, 95% CI =0.2-1.5) after one year( P <0.05).
Conclusions
Non-only child face higher risk of smartphone addiction. Under the current population policy, it is crucial to address smartphone addiction among middle school students who is not only child.
7.CT signs and AI parameters predict colorectal cancer neoadjuvant chemotherapy efficacy
Guobin LAN ; Chuang LIU ; Hao WANG ; Hongyu MA ; Zeliang LI ; Wen CHEN ; Wenqiang ZHANG
Chinese Journal of Radiological Health 2025;34(5):713-719
Objective To explore the value of CT signs and quantitative parameters of artificial intelligence (AI) in predicting the efficacy of neoadjuvant chemotherapy for colorectal cancer. Methods A total of 349 colorectal cancer patients who received neoadjuvant chemotherapy at Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine in Hebei Province from January 2022 to January 2025 were selected and and divided into the effective group (n = 267) and the ineffective group (n = 82) according to the evaluation criteria for the efficacy of solid tumors. Conduct a CT examination and extract AI quantitative parameters from the CT images based on the lesion. The data were analyzed using SPSS21.0 software, Logistic regression was used to screen the influencing factors of ineffective neoadjuvant chemotherapy in patients with colorectal cancer, and separate and combined models of CT signs and AI quantitative parameters were established. The predictive effect of the model was verified by using the ROC curve, calibration curve and decision curve. Results Compared with the effective group, the proportion of regular tumor morphology and the proportion of non-enlarged lymph nodesin the ineffective group were smaller. The tumor volume, peak value and entropy value were larger (P < 0.05). Multivariable analysis showed that irregular shape (OR= 4.216), presence of lymph node enlargement (OR = 8.998), larger tumor volume (OR = 1.109), higher average CT value (OR = 1.120), elevated peak value (OR = 2.528), and increased entropy value (OR = 1.390) were independent risk factors for ineffective neoadjuvant chemotherapy in colorectal cancer (P < 0.05). The areas under the ROC curves of the individual and combined models of CT signs and AI quantitative parameters were 0.777, 0.818, and 0.877, respectively(P < 0.05). The calibration curve showed a Brier score of 0.091. The decision curve showed that the threshold was between 0.10 and 0.85, and the combined model achieved a relatively high net clinical benefit. Conclusion CT signs combined with AI quantitative parameters has a predictive value for the efficacy of neoadjuvant chemotherapy in colorectal cancer. To provide evidence-based basis for clinical screening of the population benefiting from chemotherapy and optimization of treatment strategies.
8.A Case of Metastatic Non-small Cell Lung Cancer with Rare BRAF p.L485_T488delinsF Mutation Treated with Dabrafenib and Trametinib.
Yunfei WANG ; Wen ZHAO ; Chuang YANG ; Rongyu ZHANG ; Chengjun WANG ; Chunyan HAN ; Jisheng LI
Chinese Journal of Lung Cancer 2025;28(8):638-643
The v-Raf murine sarcoma viral oncogene homolog B (BRAF) gene is one of the most critical proto-oncogenes and functions as a key regulator in the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway. The incidence of BRAF mutations in non-small cell lung cancer (NSCLC) patients ranges from 1.5% to 5.5%, with BRAF V600 mutations accounting for approximately 30%-50% of all BRAF mutations, among which BRAF V600E represents the most prevalent mutation type. Currently, the combination of Dabrafenib and Trametinib has been recommended as first-line therapy for BRAF V600-mutant NSCLC by multiple domestic and international guidelines including National Comprehensive Cancer Network (NCCN), European Society of Medical Oncology (ESMO), and Chinese Society of Clinical Oncology (CSCO). However, there are no clear targeted treatment recommendations for BRAF non-V600 mutations. Although case reports suggest that Dabrafenib combined with Trametinib may be effective for patients with BRAF non-V600 mutations, the efficacy and safety require further validation due to limited sample size and lack of large-scale clinical trial data. This article reports a case of NSCLC with a rare BRAF insertion and deletion mutation that responded well to the treatment of Dabrafenib in combination with Trametinib, aiming to enhance clinicians' understanding of such NSCLC cases with extremely rare mutation and provide a reference for future treatment strategies.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Imidazoles/administration & dosage*
;
Lung Neoplasms/pathology*
;
Mutation
;
Neoplasm Metastasis
;
Oximes/administration & dosage*
;
Proto-Oncogene Mas
;
Proto-Oncogene Proteins B-raf/genetics*
;
Pyridones/administration & dosage*
;
Pyrimidinones/administration & dosage*
9.Evaluating the impact of Carbon Emission Trading Policy on pan-cancer incidence among middle-aged and elderly populations: a quasi-natural experiment.
Chuang YANG ; Yiyuan SUN ; Yihan LI ; Lijun QIAN
Environmental Health and Preventive Medicine 2025;30():43-43
BACKGROUND:
Cancer is a major public health concern, particularly among middle-aged and elderly populations, who are disproportionately affected by rising cancer incidence. Environmental pollution has been identified as a significant risk factor for cancer development. China's Carbon Emission Trading Policy (CETP), implemented in pilot regions since 2013, aims to reduce carbon emissions and improve air quality. This study evaluates the impact of CETP on pan-cancer incidence, with a focus on its effects on specific cancer types and vulnerable populations.
METHODS:
This quasi-natural experiment utilized data from the China Health and Retirement Longitudinal Study (CHARLS) and environmental data from the China National Environmental Monitoring Center (2011-2018). A staggered difference-in-differences (DID) model was employed to estimate the impact of CETP on cancer incidence. Robustness tests, including parallel trend tests, placebo analysis, and entropy balancing, validated the findings. Subgroup analyses were performed to assess the policy's heterogeneous effects based on gender, Body Mass Index (BMI), and smoking status.
RESULTS:
CETP implementation significantly reduced the incidence of six cancer types: endometrial, cervical, gastric, esophageal, breast, and lung cancers. Overall, pan-cancer incidence significantly declined post-policy implementation (CETP × POST: -47.200, 95% CI: [-61.103, -33.296], p < 0.001). The policy demonstrated stronger effects in highly polluted areas and among individuals with poorer mental health. Subgroup analysis revealed that females, individuals with lower BMI, and non-smokers experienced more substantial benefits.
CONCLUSIONS
CETP significantly reduces cancer incidence by improving environmental quality and influencing mental health, with particularly strong effects observed among high-risk populations. This study highlights the important role of environmental economic policies in mitigating cancer burden and promoting public health. Future research should further explore the long-term impacts of this policy and its applicability across different national and regional contexts.
Humans
;
Incidence
;
Neoplasms/epidemiology*
;
China/epidemiology*
;
Middle Aged
;
Female
;
Male
;
Aged
;
Air Pollution/legislation & jurisprudence*
;
Carbon/analysis*
;
Longitudinal Studies
;
Air Pollutants/analysis*
;
Environmental Exposure
10.Identification and expression analysis of AP2/ERF gene family in Artemisia argyi
Xue-xue YUE ; Chuang XIAO ; Qian-wen ZHANG ; Sai-nan PENG ; Chang-jie CHEN ; Jia ZHOU ; Jin-xin LI ; Yu-kun LI ; Yu-huan MIAO ; Da-hui LIU
Acta Pharmaceutica Sinica 2024;59(9):2634-2647
italic>Artemisia argyi is a traditional Chinese medicine in China, which is used as medicine with its leaves. The leaves of


Result Analysis
Print
Save
E-mail