1.Clinical and Radiological Outcomes of Transarterial Embolization for Adhesive Capsulitis
Keng-Wei LIANG ; Hsuan Yin LIN ; Kai-Lan HSU ; Fa-Chuan KUAN ; Chia-Yu GEAN ; Chien-Kuo WANG ; Wei-Ren SU ; Bow WANG
Korean Journal of Radiology 2025;26(3):230-238
Objective:
To assess the effect of transarterial embolization (TAE) for adhesive capsulitis (AC) by evaluating clinical outcomes and changes in inflammation using magnetic resonance imaging (MRI).
Materials and Methods:
Patients who had undergone TAE between August 2020 and August 2023 for AC refractory to conservative treatments without any invasive procedures for more than 3 months, and had undergone baseline and 3-month post-AC follow-up contrast-enhanced MRI evaluations, were included. A suspension mixture of 500 mg imipenem/cilastatin in 10 mL of iodinated contrast agent was used for TAE. MRI results were analyzed to assess periarticular capsule/ligament inflammation. Clinical assessments included pain scores using the numeric rating scale (NRS) and functional scores using the quick disabilities of the arm, shoulder, and hand (Quick DASH) questionnaire.
Results:
Twenty-five patients (female:male, 14:11; age, 54.9 ± 7.1 years) were included. Significant reductions in average NRS pain scores as well as improvements in Quick DASH scores and range of motion, including anterior flexion and abduction, were observed at 1, 3, and 6 months after TAE (all P < 0.001). MRI analyses revealed that TAE significantly decreased the grades of axillary recess capsule enhancement, rotator interval (RI) capsule T2 signal intensity, and RI capsule enhancement (all P ≤ 0.004).
Conclusion
TAE may be an effective and safe therapeutic approach for AC refractory to conservative treatments, alleviating pain and supporting functional recovery. The observed MRI findings suggest that the effectiveness of TAE for AC may be attributed to the reduction of inflammation and the elimination of angiogenesis.
2.Clinical and Radiological Outcomes of Transarterial Embolization for Adhesive Capsulitis
Keng-Wei LIANG ; Hsuan Yin LIN ; Kai-Lan HSU ; Fa-Chuan KUAN ; Chia-Yu GEAN ; Chien-Kuo WANG ; Wei-Ren SU ; Bow WANG
Korean Journal of Radiology 2025;26(3):230-238
Objective:
To assess the effect of transarterial embolization (TAE) for adhesive capsulitis (AC) by evaluating clinical outcomes and changes in inflammation using magnetic resonance imaging (MRI).
Materials and Methods:
Patients who had undergone TAE between August 2020 and August 2023 for AC refractory to conservative treatments without any invasive procedures for more than 3 months, and had undergone baseline and 3-month post-AC follow-up contrast-enhanced MRI evaluations, were included. A suspension mixture of 500 mg imipenem/cilastatin in 10 mL of iodinated contrast agent was used for TAE. MRI results were analyzed to assess periarticular capsule/ligament inflammation. Clinical assessments included pain scores using the numeric rating scale (NRS) and functional scores using the quick disabilities of the arm, shoulder, and hand (Quick DASH) questionnaire.
Results:
Twenty-five patients (female:male, 14:11; age, 54.9 ± 7.1 years) were included. Significant reductions in average NRS pain scores as well as improvements in Quick DASH scores and range of motion, including anterior flexion and abduction, were observed at 1, 3, and 6 months after TAE (all P < 0.001). MRI analyses revealed that TAE significantly decreased the grades of axillary recess capsule enhancement, rotator interval (RI) capsule T2 signal intensity, and RI capsule enhancement (all P ≤ 0.004).
Conclusion
TAE may be an effective and safe therapeutic approach for AC refractory to conservative treatments, alleviating pain and supporting functional recovery. The observed MRI findings suggest that the effectiveness of TAE for AC may be attributed to the reduction of inflammation and the elimination of angiogenesis.
3.Clinical and Radiological Outcomes of Transarterial Embolization for Adhesive Capsulitis
Keng-Wei LIANG ; Hsuan Yin LIN ; Kai-Lan HSU ; Fa-Chuan KUAN ; Chia-Yu GEAN ; Chien-Kuo WANG ; Wei-Ren SU ; Bow WANG
Korean Journal of Radiology 2025;26(3):230-238
Objective:
To assess the effect of transarterial embolization (TAE) for adhesive capsulitis (AC) by evaluating clinical outcomes and changes in inflammation using magnetic resonance imaging (MRI).
Materials and Methods:
Patients who had undergone TAE between August 2020 and August 2023 for AC refractory to conservative treatments without any invasive procedures for more than 3 months, and had undergone baseline and 3-month post-AC follow-up contrast-enhanced MRI evaluations, were included. A suspension mixture of 500 mg imipenem/cilastatin in 10 mL of iodinated contrast agent was used for TAE. MRI results were analyzed to assess periarticular capsule/ligament inflammation. Clinical assessments included pain scores using the numeric rating scale (NRS) and functional scores using the quick disabilities of the arm, shoulder, and hand (Quick DASH) questionnaire.
Results:
Twenty-five patients (female:male, 14:11; age, 54.9 ± 7.1 years) were included. Significant reductions in average NRS pain scores as well as improvements in Quick DASH scores and range of motion, including anterior flexion and abduction, were observed at 1, 3, and 6 months after TAE (all P < 0.001). MRI analyses revealed that TAE significantly decreased the grades of axillary recess capsule enhancement, rotator interval (RI) capsule T2 signal intensity, and RI capsule enhancement (all P ≤ 0.004).
Conclusion
TAE may be an effective and safe therapeutic approach for AC refractory to conservative treatments, alleviating pain and supporting functional recovery. The observed MRI findings suggest that the effectiveness of TAE for AC may be attributed to the reduction of inflammation and the elimination of angiogenesis.
4.Clinical and Radiological Outcomes of Transarterial Embolization for Adhesive Capsulitis
Keng-Wei LIANG ; Hsuan Yin LIN ; Kai-Lan HSU ; Fa-Chuan KUAN ; Chia-Yu GEAN ; Chien-Kuo WANG ; Wei-Ren SU ; Bow WANG
Korean Journal of Radiology 2025;26(3):230-238
Objective:
To assess the effect of transarterial embolization (TAE) for adhesive capsulitis (AC) by evaluating clinical outcomes and changes in inflammation using magnetic resonance imaging (MRI).
Materials and Methods:
Patients who had undergone TAE between August 2020 and August 2023 for AC refractory to conservative treatments without any invasive procedures for more than 3 months, and had undergone baseline and 3-month post-AC follow-up contrast-enhanced MRI evaluations, were included. A suspension mixture of 500 mg imipenem/cilastatin in 10 mL of iodinated contrast agent was used for TAE. MRI results were analyzed to assess periarticular capsule/ligament inflammation. Clinical assessments included pain scores using the numeric rating scale (NRS) and functional scores using the quick disabilities of the arm, shoulder, and hand (Quick DASH) questionnaire.
Results:
Twenty-five patients (female:male, 14:11; age, 54.9 ± 7.1 years) were included. Significant reductions in average NRS pain scores as well as improvements in Quick DASH scores and range of motion, including anterior flexion and abduction, were observed at 1, 3, and 6 months after TAE (all P < 0.001). MRI analyses revealed that TAE significantly decreased the grades of axillary recess capsule enhancement, rotator interval (RI) capsule T2 signal intensity, and RI capsule enhancement (all P ≤ 0.004).
Conclusion
TAE may be an effective and safe therapeutic approach for AC refractory to conservative treatments, alleviating pain and supporting functional recovery. The observed MRI findings suggest that the effectiveness of TAE for AC may be attributed to the reduction of inflammation and the elimination of angiogenesis.
5.Clinical and Radiological Outcomes of Transarterial Embolization for Adhesive Capsulitis
Keng-Wei LIANG ; Hsuan Yin LIN ; Kai-Lan HSU ; Fa-Chuan KUAN ; Chia-Yu GEAN ; Chien-Kuo WANG ; Wei-Ren SU ; Bow WANG
Korean Journal of Radiology 2025;26(3):230-238
Objective:
To assess the effect of transarterial embolization (TAE) for adhesive capsulitis (AC) by evaluating clinical outcomes and changes in inflammation using magnetic resonance imaging (MRI).
Materials and Methods:
Patients who had undergone TAE between August 2020 and August 2023 for AC refractory to conservative treatments without any invasive procedures for more than 3 months, and had undergone baseline and 3-month post-AC follow-up contrast-enhanced MRI evaluations, were included. A suspension mixture of 500 mg imipenem/cilastatin in 10 mL of iodinated contrast agent was used for TAE. MRI results were analyzed to assess periarticular capsule/ligament inflammation. Clinical assessments included pain scores using the numeric rating scale (NRS) and functional scores using the quick disabilities of the arm, shoulder, and hand (Quick DASH) questionnaire.
Results:
Twenty-five patients (female:male, 14:11; age, 54.9 ± 7.1 years) were included. Significant reductions in average NRS pain scores as well as improvements in Quick DASH scores and range of motion, including anterior flexion and abduction, were observed at 1, 3, and 6 months after TAE (all P < 0.001). MRI analyses revealed that TAE significantly decreased the grades of axillary recess capsule enhancement, rotator interval (RI) capsule T2 signal intensity, and RI capsule enhancement (all P ≤ 0.004).
Conclusion
TAE may be an effective and safe therapeutic approach for AC refractory to conservative treatments, alleviating pain and supporting functional recovery. The observed MRI findings suggest that the effectiveness of TAE for AC may be attributed to the reduction of inflammation and the elimination of angiogenesis.
6.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
Objective:
This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans.
Methods:
Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness.
Results:
The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements.
Conclusion
Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients.
7.Syncope in Migraine: A Genome-Wide Association Study Revealing Distinct Genetic Susceptibility Variants Across Subtypes
Wei LIN ; Yi LIU ; Chih-Sung LIANG ; Po-Kuan YEH ; Chia-Kuang TSAI ; Kuo-Sheng HUNG ; Yu-Chin AN ; Fu-Chi YANG
Journal of Clinical Neurology 2024;20(6):599-609
Background:
and Purpose Syncope is characterized by the temporary loss of consciousness and is commonly associated with migraine. However, the genetic factors that contribute to this association are not well understood. This study investigated the specific genetic loci that make patients with migraine more susceptible to syncope as well as the genetic factors contributing to syncope and migraine comorbidity in a Han Chinese population in Taiwan.
Methods:
A genome-wide association study was applied to 1,724 patients with migraine who visited a tertiary hospital in Taiwan. The patients were genotyped using the Affymetrix Axiom Genome-Wide TWB 2.0 array and categorized into the following subgroups based on migraine type: episodic migraine, chronic migraine, migraine with aura, and migraine without aura. Multivariate regression analyses were used to assess the relationships between specific single-nucleotide polymorphisms (SNPs) and the clinical characteristics in patients with syncope and migraine comorbidity.
Results:
In patients with migraine, SNPs were observed to be associated with syncope. In particular, the rs797384 SNP located in the intron region of LOC102724945 was associated with syncope in all patients with migraine. Additionally, four SNPs associated with syncope susceptibility were detected in the nonmigraine control group, and these SNPs differed from those in the migraine group, suggesting distinct underlying mechanisms. Furthermore, the rs797384 variant in the intron region of LOC102724945 was associated with the score on the Beck Depression Inventory.
Conclusions
The novel genetic loci identified in this study will improve our understanding of the genetic basis of syncope and migraine comorbidity.
8.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
Objective:
This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans.
Methods:
Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness.
Results:
The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements.
Conclusion
Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients.
9.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
Objective:
This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans.
Methods:
Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness.
Results:
The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements.
Conclusion
Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients.
10.Feasibility of acceptance of multiple accelerators using Elekta AGL standard procedures
Liang ZHAO ; Guiyuan LI ; Xiaohong WAN ; Xinyuan CHEN ; Kuo MEN ; Jianrong DAI ; Yuan TIAN
Chinese Journal of Radiation Oncology 2024;33(3):244-249
Objective:To verify the feasibility of using Elekta accelerated go live (AGL) standard process for the acceptance of multiple accelerators.Methods:The beams of three accelerators were adjusted by PTW Beamscan three-dimensional water tank to reach the AGL standard. Dose verification was performed for three accelerators that met AGL standards. A simple field test example from Cancer Hospital Chinese Academy of Medical Sciences was used to compare the MapCheck 3 surface dose measurement results with the surface dose calculated by the same accelerator model. Images of 10 patients including head and neck, esophagus, breast, lung and rectum were randomly selected. volumetric-modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) treatment techniques were used for planning design, and the measured dose of ArcCheck was compared with the planned dose calculated by the same accelerator model. One-way ANOVA was used to statistically analyze the passing rates of two-dimensional and three-dimensional dose verification.Results:The 6 MV X-ray percentage depth dose at 10 cm underwater (PDD 10) of three accelerators was 67.45%, 67.36%, 67.47%, and the maximum deviation between the three accelerators was 0.11%. The 6 MV flattenting filter free (FFF) mode X-ray PDD 10 was 67.33%, 67.20%, 67.20%, and the maximum deviation between the three accelerators was 0.13%. All required discrete point doses on each energy 30 cm×30 cm Profile spindle of the three accelerator X-rays deviated less than ±1% from the standard data. Absolute γ analysis was performed on the results of MapCheck 3 two-dimensional dose matrix validation. Under the 10% threshold of 2 mm/3% standard, the average passing rate of the test cases in Cancer Hospital Chinese Academy of Medical Sciences was above 99%, and the difference was not statistically significant ( P>0.05). Absolute γ analysis was performed on the ArcCheck verification results. Under the 10% threshold, the pass rate of 2 mm/3% was all above 95%, the maximum average passing rate of the three accelerators with different energy and different treatment techniques was 0.28% (6 MV, VMAT), 0.19%(6 MV FFF, VMAT), 0.56% (6 MV, IMRT) and 0.05% (6 MV FFF, IMRT), and the difference was not statistically significant ( P>0.05). Conclusion:Compared with traditional accelerator acceptance process, the acceptance time of each accelerator is shortened by 4-6 weeks by using the AGL standard process, and the radiotherapy plan of patients can be interchangeably executed among different accelerators.

Result Analysis
Print
Save
E-mail