1.Analysis of gemcitabine adverse drug reactions and risk factors in Inner Mongolia
Shengnan YANG ; Wei SHI ; Yufang ZHAO ; Zhien LIU ; Wenpu LEI ; Yanan ZHANG ; Ke ZHAO ; Hao GUO
China Pharmacy 2025;36(4):486-490
OBJECTIVE To analyze the occurrence characteristics and risk factors of adverse drug reactions (ADR) of gemcitabine for injection in national centralized volume-based procurement (hereinafter referred to as “centralized procurement”), and provide reference for clinical safe drug use. METHODS A retrospective study was conducted to collect the relevant case reports of gemcitabine for injection reported to the National Adverse Drug Reaction Monitoring System by Inner Mongolia Autonomous Region from January 2022 to December 2023; basic information of patients, drug use status, patient outcomes, rational drug use and other information were collected, and the occurrence characteristics of ADRs with leukopenia, myelosuppression, neutropenia, thrombocytopenia and liver dysfunction were analyzed. Univariate analysis and multivariate Logistic regression were used to analyze the correlation of gender, age, combination of antitumor drugs, original malignant tumor and drug dose with ADR. RESULTS A total of 315 cases reports (315 patients) of gemcitabine-induced ADR were included in this study, with a male-to-female ratio of 1.42∶1 and age of (61.17±9.13) years. The primary malignant tumor was pancreatic cancer (73 cases, 23.17%). Leukopenia, myelosuppression and nausea were the most common ADR, followed by neutropenia, thrombocytopenia, liver dysfunction and so on. The severity grade of ADR was mainly 1-2, and the outcome of most ADR was good. Multivariate Logistic regression analysis showed that combination of antitumor drugs was a risk factor for myelosuppression and neutropenia (RR=2.154, 95%CI: 1.218- 3.807, P=0.008; RR=3.099, 95%CI: 1.240-7.744, P=0.016); gender (female) was a risk factor for leukopenia and liver dysfunction (RR=0.508, 95%CI: 0.302-0.853, P=0.010; RR=0.301, 95%CI: 0.102-0.887, P=0.029). In terms of drug use rationality, there were 143 cases (45.40%) of drug 126.com use in accordance with the indications of the label, and 172 cases (54.60%) of off-label drug use. Among them, the primary malignant tumors were bladder cancer, bile duct cancer and ovarian cancer, which ranked the top three off-label drug use. CONCLUSIONS The ADR caused by gemcitabine in Inner Mongolia is mainly in the blood and digestive systems. The severity of ADRs is mainly classified as 1-2 levels, and most ADRs have good outcomes. Gender (female) and combination medication are risk factors for gemcitabine-induced ADR. Appropriate chemotherapy regimen should be selected according to the patient’s condition and physical condition, and ADR monitoring in blood and digestive systems should be strengthened during medication of gemcitabine.
2.Research on The Role of Dopamine in Regulating Sleep and Wakefulness Through Exercise
Li-Juan HOU ; Ya-Xuan GENG ; Ke LI ; Zhao-Yang HUANG ; Lan-Qun MAO
Progress in Biochemistry and Biophysics 2025;52(1):88-98
Sleep is an instinctive behavior alternating awakening state, sleep entails many active processes occurring at the cellular, circuit and organismal levels. The function of sleep is to restore cellular energy, enhance immunity, promote growth and development, consolidate learning and memory to ensure normal life activities. However, with the increasing of social pressure involved in work and life, the incidence of sleep disorders (SD) is increasing year by year. In the short term, sleep disorders lead to impaired memory and attention; in the longer term, it produces neurological dysfunction or even death. There are many ways to directly or indirectly contribute to sleep disorder and keep the hormones, including pharmacological alternative treatments, light therapy and stimulus control therapy. Exercise is also an effective and healthy therapeutic strategy for improving sleep. The intensities, time periods, and different types of exercise have different health benefits for sleep, which can be found through indicators such as sleep quality, sleep efficiency and total sleep time. So it is more and more important to analyze the mechanism and find effective regulation targets during sleep disorder through exercise. Dopamine (DA) is an important neurotransmitter in the nervous system, which not only participates in action initiation, movement regulation and emotion regulation, but also plays a key role in the steady-state remodeling of sleep-awakening state transition. Appreciable evidence shows that sleep disorder on humans and rodents evokes anomalies in the dopaminergic signaling, which are also implicated in the development of psychiatric illnesses such as schizophrenia or substance abuse. Experiments have shown that DA in different neural pathways plays different regulatory roles in sleep behavior, we found that increasing evidence from rodent studies revealed a role for ventral tegmental area DA neurons in regulating sleep-wake patterns. DA signal transduction and neurotransmitter release patterns have complex interactions with behavioral regulation. In addition, experiments have shown that exercise causes changes in DA homeostasis in the brain, which may regulate sleep through different mechanisms, including cAMP response element binding protein signal transduction, changes in the circadian rhythm of biological clock genes, and interactions with endogenous substances such as adenosine, which affect neuronal structure and play a neuroprotective role. This review aims to introduce the regulatory effects of exercise on sleep disorder, especially the regulatory mechanism of DA in this process. The analysis of intracerebral DA signals also requires support from neurophysiological and chemical techniques. Our laboratory has established and developed an in vivo brain neurochemical analysis platform, which provides support for future research on the regulation of sleep-wake cycles by movement. We hope it can provide theoretical reference for the formulation of exercise prescription for clinical sleep disorder and give some advice to the combined intervention of drugs and exercise.
3.Effects of Electroacupuncture at "Fengchi" (GB 20), "Waiguan" (TE 5), and "Yanglingquan" (GB 34) on Nociceptive Sensitization and PKC/TRPV1 Pathway in the Trigeminal Ganglion of Chronic Migraine Model Rats
Yixiang ZENG ; Runze TU ; Shucong ZHAO ; Yang YANG ; Haojia WEN ; Zhuozhong HE ; Shengli ZHOU ; Lei TAN ; Ke HE ; Lei FU
Journal of Traditional Chinese Medicine 2025;66(3):283-289
ObjectiveTo explore the possible mechanisms of electroacupuncture at Fengchi (GB 20), Waiguan (TE 5), and Yanglingquan (GB 34) in treating chronic migraine from the perspective of nociceptive sensitization. MethodsForty SPF-grade SD rats were randomly divided into blank group, model group, electroacupuncture group, electroacupuncture + agonist group, and inhibitor group, with 8 rats in each group. Except for the blank group, rats were injected intraperitoneally with nitroglycerin to establish a chronic migraine rat model. After successful modeling, the electroacupuncture group received electroacupuncture at bilateral "Fengchi" (GB 20), "Waiguan" (TE 5), and "Yanglingquan" (GB 34) for 30 minutes each session. The electroacupuncture + agonist group received the same electroacupuncture treatment and additional injection of protein kinase C (PKC) agonist Phorbol 12-myristate 13-acetate (1.0 ng/μl, 25 μl) via the infraorbital foramen. The inhibitor group received PKC inhibitor Chelerythrine Chloride (1.0 ng/μl, 10 μl) via the infraorbital foramen. The blank group, model group, and inhibitor group underwent restraint for 30 minutes without other interventions. All groups were continuously intervened for 5 days. After the intervention, the nociceptive thresholds (mechanical and thermal pain) of the periorbital area and hind paw were measured. The expression levels of transient receptor potential vanillic acid subtype 1 (TRPV1), phosphorylated TRPV1 (p-TRPV1), PKC proteins, Trpv1, Pkc mRNA, and the average fluorescence intensity of transient receptor potential vanillic acid subtype 1 (TRPV1) and PKC in the trigeminal ganglion were detected using Western Blot, real-time fluorescence quantitative PCR, and immunofluorescence methods. ResultsCompared with the blank group, the mechanical and thermal pain thresholds of the periorbital area and hind paw were reduced in the model group, and the protein levels of TRPV1, PKC, p-TRPV1, as well as the mRNA expression of Trpv1 and Pkc, and the average fluorescence intensity of TRPV1 and PKC in the trigeminal ganglion significantly increased (P<0.05 or P<0.01). Compared with the model group, the electroacupuncture group exhibited increased mechanical and thermal pain thresholds in the periorbital and hind paw areas, and decreased protein levels of TRPV1, PKC, p-TRPV1, mRNA expression of Trpv1 and Pkc, and average fluorescence intensity of TRPV1. In the electroacupuncture + agonist group, the average fluorescence intensity of TRPV1 in the trigeminal ganglion decreased. The inhibitor group exhibited increased mechanical pain thresholds in the periorbital area and thermal pain thresholds in the hind paw, along with decreased protein levels of TRPV1, PKC, p-TRPV1, and the average fluorescence intensity of TRPV1 and PKC (P<0.05 or P<0.01). Compared with the electroacupuncture group, the electroacupuncture + agonist group showed an increase in the protein levels of TRPV1, PKC, p-TRPV1, and the mRNA expression of Trpv1 (P<0.05 or P<0.01). ConclusionElectroacupuncture at the "Fengchi" (GB 20), "Waiguan" (TE 5), and "Yanglingquan" (GB 34) acupoints can increase the mechanical and thermal pain thresholds in chronic migraine rats and alleviate nociceptive sensitization. The mechanism may be related to the inhibition of PKC/TRPV1 pathway.
4.Effects of honey-processed Astragalus on energy metabolism and polarization of RAW264.7 cells
Hong-chang LI ; Ke PEI ; Wang-yang XIE ; Xiang-long MENG ; Zi-han YU ; Wen-ling LI ; Hao CAI
Acta Pharmaceutica Sinica 2025;60(2):459-470
In this study, RAW264.7 cells were employed to investigate the effects of honey-processed
5.Chemical consitituents and hypoglycemic activity of Qinhuai No. 1 Rehmannia glutinosa
Meng YANG ; Zhi-you HAO ; Xiao-lan WANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Shi-qi ZHOU ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2025;60(1):205-210
Eight compounds were isolated and purified from the ethyl acetate part of 70% acetone extract of
6.A Case Report of Pachydermoperiostosis by Multidisciplinary Diagnosis and Treatment
Jie ZHANG ; Yan ZHANG ; Li HUO ; Ke LYU ; Tao WANG ; Ze'nan XIA ; Xiao LONG ; Kexin XU ; Nan WU ; Bo YANG ; Weibo XIA ; Rongrong HU ; Limeng CHEN ; Ji LI ; Xia HONG ; Yan ZHANG ; Yagang ZUO
JOURNAL OF RARE DISEASES 2025;4(1):75-82
A 20-year-old male patient presented to the Department of Dermatology of Peking Union Medical College Hospital with complaints of an 8-year history of facial scarring, swelling of the lower limbs, and a 4-year history of scalp thickening. Physical examination showed thickening furrowing wrinkling of the skin on the face and behind the ears, ciliary body hirsutism, blepharoptosis, and cutis verticis gyrate. Both lower limbs were swollen, especially the knees and ankles. The skin of the palms and soles of the feet was keratinized and thickened. Laboratory examination using bone and joint X-ray showed periostosis of the proximal middle phalanges and metacarpals of both hands, distal ulna and radius, tibia and fibula, distal femurs, and metatarsals.Genetic testing revealed two variants in
7.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.
8.Guiqi Yiyuan Ointment combined with cisplatin inhibits tumor growth in Lewis lung carcinoma-bearing mice by regulating PERK/eIF2α/ATF4/CHOP signaling pathway.
Nan YANG ; Jian-Qing LIANG ; Ke-Jun MIAO ; Qiang-Ping MA ; Jin-Tian LI ; Juan LI
China Journal of Chinese Materia Medica 2025;50(6):1592-1600
This study aims to investigate the anti-tumor effect and mechanism of Guiqi Yiyuan Ointment combined with cisplatin on Lewis lung carcinoma-bearing mice via the protein kinase RNA-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2α(eIF2α)/activated transcription factor 4(ATF4)/C/EBP homologous protein(CHOP) signaling pathway. Sixty SPF-grade male C57BL/6 mice were selected and assigned into a blank group and a modeling group by the random number table method. After modeling of the Lewis lung carcinoma, the mice in the modeling group were randomized into model, cisplatin(5 mg·kg~(-1), once a week), and low-, medium-, and high-dose(1.7, 3.5, and 7.05 g·kg~(-1), respectively, once a day) Guiqi Yiyuan Ointment+cisplatin(5 mg·kg~(-1)) groups(n=10). After 14 days of continuous intervention, the spleen, thymus, and tumor samples of the mice were collected, weighed, and recorded, and the spleen index, thymus index, and tumor suppression rate were calculated. Hematoxylin-eosin(HE) staining was employed to observe the pathological changes in the tumor tissue. The morphological changes of the endoplasmic reticulum of tumor cells were observed by transmission electron microscopy. The positive expression of phosphorylated eIF2α(p-eIF2α) and ATF4 in the tumor tissue was detected by immunofluorescence. Western blot was employed to determine the protein levels of phosphorylated PERK(p-PERK), p-eIF2α, ATF4, CHOP, B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cyclin-dependent kinase inhibitor 1A(p21), and cyclinD1 in the tumor tissue. Real-time fluorescent quantitative PCR was employed to determine the mRNA levels of PERK, eIF2α, ATF4, CHOP, Bax, Bcl-2, p21, and cyclinD1 in the tumor tissue. Compared with the blank group, the model group showed decreases in spleen index and thymus index(P<0.05). Compared with the model group, the cisplatin group showed decreases in spleen index and thymus index(P<0.05), and the medium-and high-dose Guiqi Yiyuan Ointment+cisplatin groups presented increases in spleen index and thymus index(P<0.05). In addition, the treatment groups all showed decreased tumor mass(P<0.05), increased tumor cell lysis and nuclear rupture, widened gap between rough endoplasmic reticulum, enhanced average fluorescence intensity of p-eIF2α and ATF4(P<0.05), up-regulated protein levels of p-PERK/PERK, p-eIF2α/eIF2α, ATF4, CHOP, Bax, and p21(P<0.05), down-regulated protein and mRNA levels of Bcl-2 and cyclinD1(P<0.05), and up-regulated mRNA levels of PERK, eIF2α, ATF4, CHOP, Bax, and p21(P<0.05). Compared with the cisplatin group, the combination groups showed increases in spleen index and thymus index(P<0.05) as well as mean optical density(P<0.05), and the high-dose Guiqi Yiyuan Ointment+cisplatin group showed decreased tumor mass(P<0.05). In addition, the medium-and high-dose Guiqi Yiyuan Ointment+cisplatin groups showcased enhanced average fluorescence intensity of p-eIF2α and ATF4(P<0.05), up-regulated protein levels of p-PERK/PERK, p-eIF2α/eIF2α, ATF4, CHOP, Bax, and p21(P<0.05), down-regulated protein and mRNA levels of Bcl-2 and cyclinD1(P<0.05), and up-regulated mRNA levels of PERK, eIF2α, ATF4, CHOP, Bax, and p21(P<0.05). In conclusion, Guiqi Yiyuan Ointment combined with cisplatin can effectively inhibit the growth of Lewis lung carcinoma in mice by regulating the expression of proteins related to the PERK/eIF2α/ATF4/CHOP signaling pathway and promoting cell cycle arrest and apoptosis.
Animals
;
Cisplatin/administration & dosage*
;
Activating Transcription Factor 4/genetics*
;
Eukaryotic Initiation Factor-2/genetics*
;
eIF-2 Kinase/genetics*
;
Carcinoma, Lewis Lung/pathology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Mice
;
Signal Transduction/drug effects*
;
Mice, Inbred C57BL
;
Transcription Factor CHOP/genetics*
;
Ointments/administration & dosage*
;
Humans
;
Cell Proliferation/drug effects*
;
Antineoplastic Agents/administration & dosage*
9.Effects of total extract of Anthriscus sylvestris on immune inflammation and thrombosis in rats with pulmonary arterial hypertension based on TGF-β1/Smad3 signaling pathway.
Ya-Juan ZHENG ; Pei-Pei YUAN ; Zhen-Kai ZHANG ; Yan-Ling LIU ; Sai-Fei LI ; Yuan RUAN ; Yi CHEN ; Yang FU ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(9):2472-2483
This study aimed to explore the effects and mechanisms of total extracts from Anthriscus sylvestris on pulmonary hypertension in rats. Sixty male SD rats were divided into normal(NC) group, model(M) group, positive drug sildenafil(Y) group, low-dose A. sylvestris(ES-L) group, medium-dose A. sylvestris(ES-M) group, and high-dose A. sylvestris(ES-H) group. On day 1, rats were intraperitoneally injected with monocrotaline(60 mg·kg~(-1)) to induce pulmonary hypertension, and the rat model was established on day 28. From days 15 to 28, intragastric administration of the respective treatments was performed. After modeling and treatment, small animal echocardiography was used to detect the right heart function of the rats. Arterial blood gas was measured using a blood gas analyzer. Hematoxylin and eosin(HE) staining and Masson staining were performed to observe cardiopulmonary pathological damage. Flow cytometry was used to detect apoptosis in the lung and myocardial tissues and reactive oxygen species(ROS) levels. Western blot was applied to detect the expression levels of transforming growth factor-β1(TGF-β1), phosphorylated mothers against decapentaplegic homolog 3(p-Smad3), Smad3, tissue plasminogen activator(t-PA), and plasminogen activator inhibitor-1(PAI-1) in lung tissue. A blood routine analyzer was used to measure inflammatory immune cell levels in the blood. Enzyme-linked immunosorbent assay(ELISA) was used to detect the expression levels of P-selectin and thromboxane A2(TXA2) in plasma. The results showed that, compared with the NC group, right heart hypertrophy index, right ventricular free wall thickness, right heart internal diameter, partial carbon dioxide pressure(PaCO_2), apoptosis in cardiopulmonary tissue, and ROS levels were significantly increased in the M group. In contrast, the ratio of pulmonary blood flow acceleration time(PAT)/ejection time(PET), right cardiac output, change rate of right ventricular systolic area, systolic displacement of the tricuspid ring, oxygen partial pressure(PaO_2), and blood oxygen saturation(SaO_2) were significantly decreased in the M group. After administration of the total extract of A. sylvestris, right heart function and blood gas levels were significantly improved, while apoptosis in cardiopulmonary tissue and ROS levels significantly decreased. Further testing revealed that the total extract of A. sylvestris significantly decreased the levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and PAI-1 proteins in lung tissue, while increasing the expression of t-PA. Additionally, the extract reduced the levels of inflammatory cells such as leukocytes, lymphocytes, granulocytes, and monocytes in the blood, as well as the levels of P-selectin and TXA2 in plasma. Metabolomics results showed that the total extract of A. sylvestris significantly affected metabolic pathways, including arginine biosynthesis, tyrosine metabolism, and taurine and hypotaurine metabolism. In conclusion, the total extract of A. sylvestris may exert an anti-pulmonary hypertension effect by inhibiting the TGF-β1/Smad3 signaling pathway, thereby alleviating immune-inflammatory responses and thrombosis.
Animals
;
Male
;
Smad3 Protein/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Signal Transduction/drug effects*
;
Hypertension, Pulmonary/genetics*
;
Thrombosis/immunology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Apoptosis/drug effects*
10.Intervention mechanism of Yiqi Fumai Formula in mice with experimental heart failure based on "heart-gut axis".
Zi-Xuan ZHANG ; Yu-Zhuo WU ; Ke-Dian CHEN ; Jian-Qin WANG ; Yang SUN ; Yin JIANG ; Yi-Xuan LIN ; He-Rong CUI ; Hong-Cai SHANG
China Journal of Chinese Materia Medica 2025;50(12):3399-3412
This paper aimed to investigate the therapeutic effect and mechanism of action of the Yiqi Fumai Formula(YQFM), a kind of traditional Chinese medicine(TCM), on mice with experimental heart failure based on the "heart-gut axis" theory. Based on the network pharmacology integrated with the group collaboration algorithm, the active ingredients were screened, a "component-target-disease" network was constructed, and the potential pathways regulated by the formula were predicted and analyzed. Next, the model of experimental heart failure was established by intraperitoneal injection of adriamycin at a single high dose(15 mg·kg~(-1)) in BALB/c mice. After intraperitoneal injection of YQFM(lyophilized) at 7.90, 15.80, and 31.55 mg·d~(-1) for 7 d, the protective effects of the formula on cardiac function were evaluated using indicators such as ultrasonic electrocardiography and myocardial injury markers. Combined with inflammatory factors in the cardiac and colorectal tissue, as well as targeted assays, the relevant indicators of potential pathways were verified. Meanwhile, 16S rDNA sequencing was performed on mouse fecal samples using the Illumina platform to detect changes in gut flora and analyze differential metabolic pathways. The results show that the administration of injectable YQFM(lyophilized) for 7 d significantly increased the left ventricular end-systolic internal diameter, fractional shortening, and ejection fraction of cardiac tissue of mice with experimental heart failure(P<0.05). Moreover, markers of myocardial injury were significantly decreased(P<0.05), indicating improved cardiac function, along with significantly suppressed inflammatory responses in cardiac and intestinal tissue(P<0.05). Additionally, the species of causative organisms was decreased, and the homeostasis of gut flora was improved, involving a modulatory effect on PI3K-Akt signaling pathway-related inflammation in cardiac and colorectal tissue. In conclusion, YQFM can affect the "heart-gut axis" immunity through the homeostasis of the gut flora, thereby exerting a therapeutic effect on heart failure. This finding provides a reference for the combination of TCM and western medicine to prevent and treat heart failure based on the "heart-gut axis" theory.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Heart Failure/microbiology*
;
Mice
;
Mice, Inbred BALB C
;
Male
;
Disease Models, Animal
;
Gastrointestinal Microbiome/drug effects*
;
Heart/physiopathology*
;
Humans
;
Signal Transduction/drug effects*

Result Analysis
Print
Save
E-mail