1.Advances and current status of research on stroke and exosomes: A visual analysis
Journal of Apoplexy and Nervous Diseases 2025;42(9):810-822
Objective To investigate the research hotspots, development trends, and potential challenges in the field of stroke and exosomes based on bibliometric and visual analyses, and to provide scientific evidence for basic research and clinical translation. Methods The Web of Science database was used to obtain related articles published up to 2024, and CiteSpace and other tools were used to perform visual analyses from various aspects such as publication trends, collaboration networks, co-occurrence and clustering of keywords, and literature burst analysis. Results A total of 1 153 articles were included. The analysis showed an overall increasing trend in the number of publications per year. The institution with the highest number of publications was Henry Ford Health System, the author with the highest number of publications was Professor Chopp, and the journal with the highest number of articles Int J Mol Sci. High-frequency keywords included "extracellular vesicles" "ischemic stroke" and "stroke", forming 12 research clusters, with neural repair and barrier protection as the key research directions. Conclusion The research on stroke and exosomes has been increasing year by year, with rapid development in recent years and the formation of an interdisciplinary pattern. Future studies should focus on the molecular mechanisms mediated by exosomes and their clinical application in stroke treatment, so as to promote the development of precision medicine and provide new therapeutic approaches.
Stroke
;
Exosomes
;
Bibliometrics
2.Effects of electroacupuncture on mitochondrial autophagy and Sirt1/FOXO3/PINK1/Parkin pathway in rats with learning-memory impairment after cerebral ischemia reperfusion injury.
Kaiqi SU ; Zhuan LV ; Ming ZHANG ; Lulu CHEN ; Hao LIU ; Jing GAO ; Xiaodong FENG
Chinese Acupuncture & Moxibustion 2025;45(2):193-199
OBJECTIVE:
To observe the effects of electroacupuncture (EA) at "Shenting" (GV24) and "Baihui" (GV20) on mitochondrial autophagy in hippocampal neurons and silent information regulator sirtuin 1 (Sirt1)/forkhead box O3 (FOXO3)/PTEN-inducible kinase 1 (PINK1)/Parkin pathway in rats with learning-memory impairment after cerebral ischemia reperfusion injury.
METHODS:
A total of 35 male SD rats were randomly divided into a sham operation group (9 rats) and a modeling group (26 rats). In the modeling group, middle cerebral artery occlusion method was used to establish the middle cerebral artery ischemia-reperfusion (MCAO/R) model, and 18 rats of successful modeling were randomly divided into a model group and an EA group, 9 rats in each one. EA was applied at "Shenting" (GV24) and "Baihui" (GV20) in the EA group, 30 min a time, once a day for 14 days. After modeling and on 7th and 14th days of intervention, neurologic deficit score was observed; the learning-memory ability was detected by Morris water maze test; the morphology of neurons in CA1 area of hippocampus was detected by Nissl staining; the mitochondrial morphology was observed by transmission electron microscopy; the protein expression of Beclin-1, microtubule-associated protein 1 light chain 3B (LC3B), P62, Sitrt1, FOXO3, PINK1 and Parkin was detected by Western blot.
RESULTS:
After modeling, the neurologic deficit scores in the model group and the EA group were higher than that in the sham operation group (P<0.001); on 7th and 14th days of intervention, the neurologic deficit scores in the model group were higher than those in the sham operation group (P<0.001), the neurologic deficit scores in the EA group were lower than those in the model group (P<0.05, P<0.01). After modeling, the escape latency in the model group and the EA group was prolonged compared with that in the sham operation group (P<0.001); on 9th-13th days of intervention, the escape latency in the model group was prolonged compared with that in the sham operation group (P<0.001), the escape latency in the EA group was shortened compared with that in the model group (P<0.05, P<0.01, P<0.001). The number of crossing plateau in the model group was less than that in the sham operation group (P<0.001); the number of crossing plateau in the EA group was more than that in the model group (P<0.05). In the model group, in CA1 area of hippocampus, the number of neurons was less, with sparse arrangement, nuclear fixation, deep cytoplasmic staining, and reduction of Nissl substance; the morphology of mitochondrion was swollen, membrane structure was fragmented, and autophagic lysosomes were formed. Compared with the model group, in the EA group, in CA1 area of hippocampus, the number of neurons was increased, the number of cells of abnormal morphology was decreased, and the number of Nissl substance was increased; the morphology of mitochondrion was more intact and the number of autophagic lysosomes was increased. Compared with the sham operation group, in the model group, the protein expression of Beclin-1, FOXO3, PINK1, Parkin and the LC3BⅡ/Ⅰ ratio in hippocampus were increased (P<0.01, P<0.001), while the protein expression of P62 was decreased (P<0.05). Compared with the model group, in the EA group, the protein expression of Beclin-1, Sirt1, FOXO3, PINK1, Parkin and the LC3BⅡ/Ⅰratio in hippocampus were increased (P<0.001, P<0.01), while the protein expression of P62 was decreased (P<0.001).
CONCLUSION
EA at "Shenting" (GV24) and "Baihui" (GV20) can relieve the symptoms of neurological deficits and improve the learning-memory ability in MCAO/R rats, its mechanism may relate to the modulation of Sirt1/FOXO3/PINK1/Parkin pathway and the enhancement of mitochondrial autophagy.
Animals
;
Electroacupuncture
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Forkhead Box Protein O3/genetics*
;
Reperfusion Injury/metabolism*
;
Ubiquitin-Protein Ligases/genetics*
;
Brain Ischemia/complications*
;
Mitochondria/genetics*
;
Autophagy
;
Protein Kinases/genetics*
;
Sirtuin 1/genetics*
;
Humans
;
Memory Disorders/psychology*
;
Signal Transduction
3.Amentoflavone alleviates acute lung injury in mice by inhibiting cell pyroptosis.
Yalei SUN ; Meng LUO ; Changsheng GUO ; Jing GAO ; Kaiqi SU ; Lidian CHEN ; Xiaodong FENG
Journal of Southern Medical University 2025;45(4):692-701
OBJECTIVES:
To investigate the effect of amentoflavone (AF) for alleviating lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and inhibiting NLRP3/ASC/Caspase-1 axis-mediated pyroptosis.
METHODS:
Female BALB/c mice were randomly divided into control group, LPS group, and AF treatment groups at low, moderate and high doses (n=12). ALI models were established by tracheal LPS instillation, and in AF treatment groups, AF was administered by gavage 30 min before LPS instillation. Six hours after LPS instillation, the mice were euthanized for examining lung tissue histopathological changes, protein levels in BALF, and MPO levels in the lung tissue. In the in vitro experiment, RAW264.7 cells were pretreated with AF, AC (a pyroptosis inhibitor), or their combination for 2 h before stimulation with LPS and ATP. The changes in cell proliferation and viability were detected using CCK-8 assay, and IL-1β, IL-6, IL-18, and TNF-α levels were determined with ELISA. Immunohistochemistry, immunofluorescence assay, and immunoblotting were used to detect the protein levels of NLRP3, ASC, cleaved caspase-1, and GSDMD N in rat lung tissues and the treated cells.
RESULTS:
In mice with LPS exposure, AF treatment significantly improved lung pathologies and edema, reduced protein levels in BALF and pulmonary MPO level, inhibited the high expression of NLRP3/ASC/Aspase-1 axis, reduced the expression of GSDMD N, and lowered the release of IL-1β, IL-6, IL-18, and TNF‑α. In RAW264.7 cells with LPS and ATP stimulation, AF pretreatment effectively reduced cell death, inhibited activation of the NLRP3/ASC/Aspase-1 axis, and reduced GSDMD N expression and the inflammatory factors. The pyroptosis inhibitor showed a similar effect to AF, and their combination produced more pronounced effects in RAW264.7 cells.
CONCLUSIONS
Amentoflavone can alleviate ALI in mice possibly by inhibiting NLRP3/ASC/Caspase-1 axis-mediated cell pyroptosis.
Animals
;
Pyroptosis/drug effects*
;
Acute Lung Injury/pathology*
;
Mice
;
Mice, Inbred BALB C
;
Female
;
Lipopolysaccharides
;
Biflavonoids/pharmacology*
;
RAW 264.7 Cells
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Caspase 1/metabolism*
;
Lung
4.Research progress of the endoplasmic reticulum-mitochondrial interactions in post-stroke cognitive impair-ment
Lulu CHEN ; Meng LUO ; Kaiqi SU ; Jing GAO ; Xiaodong FENG
The Journal of Practical Medicine 2024;40(7):1023-1028
Post-stroke cognitive impairment(PSCI),refers to a range of clinical syndromes of cognitive impairment caused by stroke.Although its specific pathogenesis is still unclear,many studies have confirmed that endoplasmic reticulum-mitochondria interaction has become a key hub for intracellular signal transduction and substance metabolism,and its regulation of various biological processes,such as Ca2+ balance,lipid metabolism,mitochondrial dynamics,autophagy,and neuroinflammation,is closely related to the development of PSCI.There-fore,in this paper,we will review the various functions of endoplasmic reticulum-mitochondrial interactions and explore their specific roles in PSCI,in order to discover new therapeutic targets and provide new theoretical basis and references for the development of PSCI-targeted drugs in the future.
5.Effect of Tongdu Xingshen Needling Method (通督醒神针刺法) on Expression of AMPA Receptors and Their Accessory Proteins in the Hippocampus of Rats with Learning Memory Impairment After Cerebral Ischaemia-Reperfusion
Xiaodi RUAN ; Jing GAO ; Zhuan LYU ; Qi LI ; Kaiqi SU ; Yiming GU ; Mingyue YU ; Shikui QI ; Meng LUO ; Mingli WU ; Huiling WANG ; Xin SHEN ; Xiaodong FENG
Journal of Traditional Chinese Medicine 2023;64(23):2435-2442
ObjectiveTo explore the possible mechanism of Tongdu Xingshen needling method (通督醒神针刺法) on post-stroke cognitive impairment. MethodsSD rats were randomly divided into a normal group (n=12), a sham surgery group (n=12), a model group (n=12), and a electroacupuncture group (n=13). The rats in the model group and electroacupuncture group were subjected to the wire bolus method to establish the rats model with learning memory impairment after cerebral ischaemia-reperfusion. After successful modelling, the rats in the electroacupuncture group were given electroacupuncture interventions at “Shenting (GV 24)” and “Baihui (GV 20)” once a day for 30 minutes for 14 days. The other three groups did not receive other interventions but grasp. A 5-day localisation navigation experiment was conducted on the 9th day of intervention, and a spatial exploration experiment was conducted on the 14th day of intervention to evaluate the learning and memory abilities of the rats. After the spatial exploration experiment, hippocampal tissues were taken from each group of rats, and the changes in the volume of cerebral infarction were observed by TTC staining; the changes in the morphology of pyramidal neurons and the density of dendritic spines in the CA1 area of the hippocampus were observed by Golgi staining; protein immunoblotting was used to detect the relative protein expression of the subunits of the α-amino-3-carboxy-5-methylisoxazole-4-propionic acid (AMPA) receptor including glutamate receptor 1 (GluR1), glutamate receptor 2 (GluR2), glutamate receptor 3 (GluR3) and auxiliary proteins TARPγ2, TARPγ8 in hippocampal tissues of rats in each group; the real-time fluorescence quantitative PCR was used to detect GluR1, GluR2, GluR3 mRNA levels in the hippocampal tissues of rats. ResultsIn the localisation navigation experiment, compared with the normal group and sham surgery group, the escape latency and total distance of rats in the model group were significantly extended (P<0.05) at day 1, 2, 3, 4, and 5; and the escape latency and total distance of rats in the electroacupuncture group tended to be significantly shorter than those in the model group (P<0.05). In the spatial exploration experiment, compared with the normal group and the sham surgery group, the number of rats crossing the platform in the model group was significantly reduced (P<0.05), and the number of crossings of the platform in the electroacupuncture group increased significantly (P<0.05). The results of TTC staining showed that the volume of cerebral infarction increased clearly in the model group compared with the sham surgery group (P<0.05), and apparently decreased in the electroacupuncture group compared with the model group (P<0.05). Golgi staining showed that the number of dendritic branches of pyramidal neurons and dendritic spines in hippocampal CA1 region significantly decreased in the model group compared with the normal group and the sham surgery group (P<0.05). The number of dendritic branches of pyramidal neurons and the density of dendritic spines in hippocampal CA1 region significantly increased in the electroacupuncture group compared with the model group (P<0.05). The protein relative expression levels of GluR1, GluR2, GluR3, TARPγ2 and TARPγ8, and the mRNA levels of GluR1, GluR2 and GluR3 in hippocampus decreased in the model group compared with the normal group and the sham surgery group (P<0.05). The protein relative expression levels of GluR1, GluR2, GluR3, TARPγ2 and TARPγ8, and the mRNA levels of GluR1, GluR2 and GluR3 in hippocampus increased in the electroacupuncture group compared with model group (P<0.05). ConclusionThe Tongdu Xingshen needling method can improve learning memory impairment after cerebral ischaemia-reperfusion, which may be related to up-regulation of the expression of AMPA receptor and their auxiliary protein TARP, and promoting the synaptic plasticity of hippocampal tissues.
6.Regulatory Effects of Acupuncture on Gut Microbiota in Mice with Breast Cancer Related Fatigue
Zhuan LYU ; Ruidong LIU ; Kaiqi SU ; Xiaodi RUAN ; Shikui QI ; Mingyue YU ; Yiming GU ; Jing GAO ; Qi LIU ; Lu FANG ; Xiaodong FENG
World Science and Technology-Modernization of Traditional Chinese Medicine 2023;25(7):2402-2411
Objective To investigate the effect of acupuncture on fatigue improvement and gut microbiota in mice with cancer-related fatigue(CRF),and explore its possible mechanism of action.Methods The mice model of CRF of breast cancer after chemotherapy was established by tumor bearing and chemotherapy.After acupuncture intervention,fatigue was evaluated by general condition,forced swimming and open field experiment.Then 16S rDNA sequencing was used to analyze the structural abundance of gut microbiota in mice.Results Acupuncture could significantly improve the fatigue degree and general condition of the mice model of CRF of breast cancer after chemotherapy.At the same time,acupuncture could adjust the abundance of gut microbiota structure,up-regulate the abundance levels of Lactobacillus,Bacteroides,firmicutes,actinobacteria,and down-regulate the abundance levels of Proteobacteria and Staphylococcus.There were also differences in the abundance of flora structure among the groups,but the abundance of beneficial bacteria was relatively high in the acupuncture group,and the abundance of pathogenic bacteria was relatively high in the other two groups.Conclusion Acupuncture may play a role in the treatment of CRF by regulating the abundance of gut microbiota structure,increasing intestinal beneficial bacteria,inhibiting pathogenic bacteria,improving body immunity,and alleviating adverse reactions caused by chemotherapy for breast cancer.
7.Role of p 38 MAPK signaling pathway on post-stroke cognitive impairment and pharmacological research progress in the prevention and treatment with traditional Chinese medicine
Zhimin DING ; Jing GAO ; Kaiqi SU ; Mingyue YU ; Shikui QI ; Yixuan FENG ; Xiaodong FENG
China Pharmacy 2022;33(8):1014-1020
Post-stroke cognitive impairment (PSCI) refers to a series of syndromes from mild cognitive impairment to dementia caused by stroke. The mitogen-activated protein kinases (MAPK)signaling pathway is a key pathway for transmitting cellular signals in mammals ,and p 38 is a classic branch of it. p 38 MAPK signaling pathway is involved in various pathophysiological processes such as cell growth ,differentiation,apoptosis and inflammatory response in central nervous system diseases. At present ,great progress has been made in clinical and basic experimental studies on prevention and treatment of PSCI by traditional Chinese medicine (TCM),but there is a lack of relevant systematic summary. Therefore ,this article summarizes the role of p 38 MAPK signaling pathway in PSCI and the pharmacological research progress of TCM in prevention and treatment of PSCI through p 38 MAPK signaling pathway.
8.Research advances in medical treatment of metabolic associated fatty liver disease
Sutong LIU ; Kaiqi SU ; Chenlu ZHAO ; Lihui ZHANG ; Wenxia ZHAO
Journal of Clinical Hepatology 2021;37(4):947-950
Metabolic associated fatty liver disease (MAFLD) is currently one of the most important liver diseases worldwide, and its incidence rate is increasing year by year. This article summarizes the current research status of medical treatment of MAFLD, including lifestyle changes and individualized drug treatment. Lifestyle changes include diet management, exercise intervention, biological clock adjustment, and psychological intervention, and individualized drug treatment includes insulin sensitizer, vitamin E, weight-loss and lipid-lowering drugs, liver-protecting and transaminase-lowering drugs, and traditional Chinese medicine treatment. At the same time, multidisciplinary treatment is the trend of clinical treatment of MAFLD.
9.Recent advance in relation between transient receptor potential vanilloid-1 receptor and cognitive dysfunction
Jie YUAN ; Kaiqi SU ; Ruiqing LI ; Huanhuan LIU ; Huili FENG ; Di HUANG ; Xiaodong FENG
Chinese Journal of Neuromedicine 2021;20(3):308-312
The correlation between transient receptor potential vanilloid-1 (TRPV1) receptor and peripheral nervous system diseases has been confirmed. In recent years, studies have shown that TRPV1 plays an important role in the central nervous system; its wide distribution in the hippocampus, cortex, and midbrain bridges the correlation between TRPV1 receptor and cognitive learning and memorial function. This paper reviews the biological role of TRPV1 receptor in the nervous system at home and abroad and concludes the relations of TRPV1 receptor with cognitive associated diseases, aiming at providing theory basis for whether TRPV1 receptors can be used as therapeutic drug targets for cognitive associated diseases.

Result Analysis
Print
Save
E-mail