1.Interpretation of 2024 ESC guidelines for the management of peripheral arterial and aortic diseases
Kai TANG ; Mingyao LUO ; Chang SHU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):14-23
In recent years, the worldwide incidence rate of peripheral arterial and aortic diseases has increased year by year, significantly increasing the cardiovascular mortality and incidence rate of the whole population. In the past, peripheral arterial and aortic diseases were often more prone to missed diagnosis and delayed treatment compared to coronary artery disease. The 2024 ESC guidelines for the management of peripheral arterial and aortic diseases for the first time combines peripheral arterial and aortic diseases, integrating and updating the 2017 guidelines for peripheral arterial disease and the 2014 guidelines for aortic disease. The aim is to provide standardized recommendations for the management of systemic arterial diseases, ensuring that patients can receive coherent and comprehensive diagnosis and treatment, thereby improving prognosis. This article interprets the main content of the guideline in order to provide reference and assistance for the clinical diagnosis and treatment of peripheral arterial and aortic diseases in China at the current stage.
2.Carnosic acid inhibits osteoclast differentiation by inhibiting mitochondrial activity
Haishan LI ; Yuheng WU ; Zixuan LIANG ; Shiyin ZHANG ; Zhen ZHANG ; Bin MAI ; Wei DENG ; Yongxian LI ; Yongchao TANG ; Shuncong ZHANG ; Kai YUAN
Chinese Journal of Tissue Engineering Research 2025;29(2):245-253
BACKGROUND:Carnosic acid,a bioactive compound found in rosemary,has been shown to reduce inflammation and reactive oxygen species(ROS).However,its mechanism of action in osteoclast differentiation remains unclear. OBJECTIVE:To investigate the effects of carnosic acid on osteoclast activation,ROS production,and mitochondrial function. METHODS:Primary bone marrow-derived macrophages from mice were extracted and cultured in vitro.Different concentrations of carnosic acid(0,10,15,20,25 and 30 μmol/L)were tested for their effects on bone marrow-derived macrophage proliferation and toxicity using the cell counting kit-8 cell viability assay to determine a safe concentration.Bone marrow-derived macrophages were cultured in graded concentrations and induced by receptor activator of nuclear factor-κB ligand for osteoclast differentiation for 5-7 days.The effects of carnosic acid on osteoclast differentiation and function were then observed through tartrate-resistant acid phosphatase staining,F-actin staining,H2DCFDA probe and mitochondrial ROS,and Mito-Tracker fluorescence detection.Western blot and RT-PCR assays were subsequently conducted to examine the effects of carnosic acid on the upstream and downstream proteins of the receptor activator of nuclear factor-κB ligand-induced MAPK signaling pathway. RESULTS AND CONCLUSION:Tartrate-resistant acid phosphatase staining and F-actin staining showed that carnosic acid dose-dependently inhibited in vitro osteoclast differentiation and actin ring formation in the cell cytoskeleton,with the highest inhibitory effect observed in the high concentration group(30 μmol/L).Carnosic acid exhibited the most significant inhibitory effect during the early stages(days 1-3)of osteoclast differentiation compared to other intervention periods.Fluorescence imaging using the H2DCFDA probe,mitochondrial ROS,and Mito-Tracker demonstrated that carnosic acid inhibited cellular and mitochondrial ROS production while reducing mitochondrial membrane potential,thereby influencing mitochondrial function.The results of western blot and RT-PCR revealed that carnosic acid could suppress the expression of NFATc1,CTSK,MMP9,and C-fos proteins associated with osteoclast differentiation,and downregulate the expression of NFATc1,Atp6vod2,ACP5,CTSK,and C-fos genes related to osteoclast differentiation.Furthermore,carnosic acid enhanced the expression of antioxidant enzyme proteins and reduced the generation of ROS during the process of osteoclast differentiation.Overall,carnosic acid exerts its inhibitory effects on osteoclast differentiation by inhibiting the phosphorylation modification of the P38/ERK/JNK protein and activating the MAPK signaling pathway in bone marrow-derived macrophages.
3.Effects of conditioned medium and exosomes of human umbilical cord mesenchymal stem cells on proliferation,migration,invasion,and apoptosis of hepatocellular carcinoma cells
Kai JIN ; Ting TANG ; Meile LI ; Yuan XIE
Chinese Journal of Tissue Engineering Research 2025;29(7):1350-1355
BACKGROUND:Mesenchymal stem cells can regulate the tumor microenvironment by secreting extracellular vesicles containing cytokines,growth factors and exosomes for the precise regulation of biological behavior of tumor cells. OBJECTIVE:To investigate the effects of human umbilical cord-derived mesenchymal stem cell conditioned medium and their released exosomes on the biological properties of hepatocellular carcinoma cells. METHODS:Human umbilical cord mesenchymal stem cell supernatant was collected,centrifuged and filtered at high speed to obtain human umbilical cord mesenchymal stem cell conditioned medium.Human umbilical cord mesenchymal stem cell supernatant was collected and human umbilical cord mesenchymal stem cell exosomes were extracted by ultra-high speed gradient centrifugation.Human umbilical cord mesenchymal stem cell exosomes were labeled with PKH26 and co-cultured with hepatocellular carcinoma cell MHCC97-H.The uptake of exosomes by MHCC97-H cells was observed by fluorescence microscopy.The effects of human umbilical cord mesenchymal stem cell conditioned medium and human umbilical cord mesenchymal stem cell exosomes on biological functions of hepatocellular carcinoma cells were assessed by the CCK-8 proliferation assay,Transwell migration and invasion assay,and the apoptosis assay. RESULTS AND CONCLUSION:(1)Human umbilical cord mesenchymal stem cell exosomes could be uptaken by MHCC97-H cells and was mainly distributed in the cytoplasm.(2)After treatment with human umbilical cord mesenchymal stem cell conditioned medium,MHCC97-H cells showed a significant increase in proliferation,migration,and invasion(P<0.001,P<0.05,P<0.01),and a significant decrease in apoptosis(P<0.001),while after treatment with human umbilical cord mesenchymal stem cell exosomes,MHCC97-H cells showed a decrease in proliferation(P<0.001)and migration,invasion,and apoptosis were significantly enhanced(P<0.001).(3)The results indicated that human umbilical cord mesenchymal stem cell conditioned medium had the ability to promote the proliferation,migration,invasion,and inhibit apoptosis of MHCC97-H cells,while human umbilical cord mesenchymal stem cell exosomes had the properties of promoting the migration,invasion and apoptosis of MHCC97-H cells,inhibiting the proliferation.
4.Role and Mechanism of Lactate Metabolism/Lactylation in The Improvement of Central Nervous System Diseases by Exercise Intervention
Progress in Biochemistry and Biophysics 2025;52(6):1401-1417
Central nervous system diseases (CNSDs) refer to a range of disorders resulting from structural or functional impairments of the brain and spinal cord, including stroke, Alzheimer’s disease (AD), Parkinson’s disease, spinal cord injury (SCI), and brain tumors. As a leading cause of disability and the second leading cause of death worldwide, CNSDs involve complex pathological mechanisms that profoundly affect patients’ physical and mental health as well as their quality of life. Therefore, identifying potential therapeutic targets and developing targeted intervention strategies for the prevention and treatment of CNSDs is of great significance. Recent studies have revealed that lactate can transmit energy between cells via the “lactate shuttle” mechanism and act as an endogenous signaling molecule, exerting diverse biological functions in CNSDs. Lactylation, a novel type of post-translational modification that uses lactate and lysine residues as substrates, plays a critical role in regulating gene transcription, immune responses, and cellular metabolism under both physiological and pathological conditions. Studies have confirmed that lactate participates in the onset and progression of CNSDs through both lactate metabolism and lactylation. In AD, lactate promotes Aβ plaque formation and impairs synaptic plasticity and cognitive function. Lactylation contributes to AD pathogenesis by regulating Aβ accumulation, Tau protein phosphorylation, neuroinflammation, pyroptosis, and ferroptosis. In ischemic stroke (IS), lactate suppresses neuroinflammation and alleviates ischemic injury. Lactylation is involved in the regulation of neuroinflammation, endothelial cell apoptosis, and neuronal ferroptosis, contributing to IS progression. In SCI, lactate promotes the phenotypic transition of astrocytes from the A1 to the A2 type, thereby mitigating neural injury. Lactylation alleviates neurological dysfunction by modulating neuroinflammation, axonal regeneration, mitochondrial function, and microglial proliferation. In glioblastoma (GBM), lactate promotes M2 polarization of microglia, facilitating tumor cell growth and dissemination. Lactylation further accelerates GBM progression by enhancing tumor cell migration, proliferation, immune evasion, and drug resistance. These findings suggest that lactate may serve as a potential therapeutic target for the prevention and treatment of CNSDs. However, its precise role in CNSDs remains unclear, and the specific mechanisms by which lactate metabolism and lactylation influence disease progression warrant further investigation. Moreover, studies have confirmed that exercise, as a key non-pharmacological intervention, holds great promise in the prevention, treatment, and rehabilitation of CNSDs. Specifically, exercise can regulate lactate metabolism and lactylation, which in turn suppresses neuroinflammation, enhances synaptic plasticity, promotes neurogenesis and angiogenesis, improves mitochondrial function in the hippocampus, and facilitates the release of neuroprotective factors, ultimately contributing to the improvement of CNSDs. This review summarizes the roles of lactate metabolism and lactylation in CNSDs, as well as the potential mechanisms by which exercise regulates lactate metabolism and lactylation to improve CNSDs, providing a theoretical basis for the benefits of exercise on brain health.
5.Dynamic Monitoring and Analysis of Ammonia Concentration in Laboratory Animal Facilities Under Suspension of Heating Ventilation and Air Conditioning System
Qingzhen JIAO ; Guihua WU ; Wen TANG ; Fan FAN ; Kai FENG ; Chunxiang YANG ; Jian QIAO ; Sufang DENG
Laboratory Animal and Comparative Medicine 2025;45(4):490-495
ObjectiveTo monitor the real-time changes in ammonia concentration in the laboratory animal facility environment before, during, and after the air conditioning system stops supplying air, so as to provide a basis and reference for developing emergency plans for the shutdown of the air conditioning system. MethodsThe laboratory animal facilities of the Wuhan Institute of Biological Products were used as the research object. Ammonia concentration detectors were used to monitor ammonia concentration continuously in the environment of conventional rabbit production facility, SPF hamster production facility, and SPF guinea pig experimental facility before and after the passive shutdown due to repairs and active maintenance shutdown of the air conditioning system, as well as the time for the ammonia concentration to return to daily levels after resuming air supply. ResultsUnder both shutdown modes of the air conditioning system, the trend of ammonia concentration changes in different laboratory animal facilities was consistent, showing a rapid increase after shutdown and a rapid decrease after resuming air supply. Under active maintenance shutdown, the maximum ammonia concentrations in the conventional rabbit production facilities, SPF hamster production facilities, and SPF guinea pig experimental facilities were 9.81 mg/m³, 14.27 mg/m³, and 6.98 mg/m³, respectively. Within 12 minutes after resuming air supply, ammonia concentration could return to normal daily levels. Under passive long-term shutdown, ammonia concentration value was positively correlated with the duration of air supply suspension. As the shutdown duration increased, ammonia concentration continued to increase. The maximum ammonia concentration values in the three facilities occurred at 88 minutes (38.06 mg/m³), 40 minutes (18.43 mg/m³), and 34 minutes (15.61 mg/m³) after air supply suspension, respectively.Within 11 minutes after resuming air supply, ammonia concentration could return to normal daily levels. ConclusionShutdown of the air conditioning system causes a rapid increase in ammonia concentration in laboratory animal facilities, and the rise in ammonia concentration is positively correlated with the duration of air supply suspension. Therefore, when an emergency shutdown of the air-conditioning system is required due to maintenance or other reasons, backup fans should be provided in accordance with the requirements of GB 50447-2008 "Architectural and Technical Code for Laboratory Animal Facilities". Older facilities should make adequate preparations and develop a scientifically sound emergency plan.
6.Induction of apoptosis in hepatocellular carcinoma cells by polyphyllin 9 through regulating the Fas/FasL sig-naling pathway and the inhibitory effect on the growth of transplanted tumor in nude mice
Minna YAO ; Wei ZHANG ; Kai GAO ; Ruili LI ; Ying YIN ; Chao GUO ; Yunyang LU ; Haifeng TANG ; Jingwen WANG
China Pharmacy 2025;36(18):2238-2243
OBJECTIVE To investigate the induction of apoptosis in hepatocellular carcinoma cells by polyphyllin 9 (PP9) through the regulation of the Fas/Fas ligand (FasL) signaling pathway, and its inhibitory effect on the growth of transplanted tumor in nude mice. METHODS Based on the screening of cell lines and intervention conditions, HepG2 cells were selected as the experimental subject to investigate the effects of 2 μmol/L and 4 μmol/L PP9 treatment on cell colony formation activity, apoptosis rate, as well as the protein expressions of Fas, FasL, cleaved caspase-8 and cleaved caspase-3. Additionally, Fas inhibitor KR- 33493 was introduced to investigate the underlying mechanism of PP9’s anti-hepatocellular carcinoma activity. Using HepG2 cell tumor-bearing nude mice model as the object, and 5-fluorouracil (20 mg/kg) as the positive control, the effects of 10 mg/kg PP9 on tumor volume, tumor mass, and the protein expressions of the nuclear proliferation-associated antigen Ki-67 and cleaved caspase-3 in tumor-bearing nude mice were investigated. RESULTS Compared with the control group, 2, 4 μmol/L PP9 significantly decreased the number of clones and the clone formation rate of cells, but significantly increased the apoptosis rate, the protein expressions of Fas, FasL, cleaved caspase-8 and cleaved caspase-3 (P<0.05 or P<0.01). However, the combination of Fas inhibitor KR-33493 could significantly reverse the effect of PP9 on the up-regulation of proteins related to the Fas/FasL signaling pathway (P<0.01). Compared with the control group, the tumor volume (on day 27), mass and protein expression of Ki- 67 in nude mice of the PP9 group were significantly decreased, while the protein expression of cleaved caspase-3 was significantly increased (P<0.01). CONCLUSIONS PP9 can induce apoptosis of HepG2 cells by activating the Fas/FasL signaling pathway. Meanwhile, PP9 can also effectively inhibit the growth of transplanted tumors in nude mice.
7.Microdissection testicular sperm extraction for men with nonobstructive azoospermia who have a testicular tumor in situ at the time of sperm retrieval.
Hao-Cheng LIN ; Wen-Hao TANG ; Yan CHEN ; Yang-Yi FANG ; Kai HONG
Asian Journal of Andrology 2025;27(3):423-427
Oncological microdissection testicular sperm extraction (onco-micro-TESE) represents a significant breakthrough for patients with nonobstructive azoospermia (NOA) and a concomitant in situ testicular tumor, to be managed at the time of sperm retrieval. Onco-micro-TESE addresses the dual objectives of treating both infertility and the testicular tumor simultaneously. The technique is intricate, necessitating a comprehensive understanding of testicular anatomy, physiology, tumor biology, and advanced microsurgical methods. It aims to carefully extract viable spermatozoa while minimizing the risk of tumor dissemination. This review encapsulates the procedural intricacies, evaluates success determinants, including tumor pathology and spermatogenic tissue health, and discusses the implementation of imaging techniques for enhanced surgical precision. Ethical considerations are paramount, as the procedure implicates complex decision-making that weighs the potential oncological risks against the profound desire for fatherhood using the male gametes. The review aims to provide a holistic overview of onco-micro-TESE, detailing methodological advances, clinical outcomes, and the ethical landscape, thus offering an indispensable resource for clinicians navigating this multifaceted clinical scenario.
Humans
;
Male
;
Azoospermia/therapy*
;
Testicular Neoplasms/pathology*
;
Sperm Retrieval
;
Microdissection/methods*
;
Testis/surgery*
8.Surgical approaches to varicocele: a systematic review and network meta-analysis.
Lin-Jie LU ; Kai XIONG ; Sheng-Lan YUAN ; Bang-Wei CHE ; Jian-Cheng ZHAI ; Chuan-Chuan WU ; Yang ZHANG ; Hong-Yan ZHANG ; Kai-Fa TANG
Asian Journal of Andrology 2025;27(6):728-737
Surgical methods for varicocele remain controversial. This study intends to evaluate the efficacy and safety of different surgical approaches for treating varicocele through a network meta-analysis (NMA). PubMed, Embase, Cochrane, and Web of Science databases were thoroughly searched. In total, 13 randomized controlled trials (RCTs) and 24 cohort studies were included, covering 9 different surgical methods. Pairwise meta-analysis and NMA were performed by means of random-effects models, and interventions were ranked based on the surface under the cumulative ranking curve (SUCRA). According to the SUCRA, microsurgical subinguinal varicocelectomy (MSV; 91.6%), microsurgical retroperitoneal varicocelectomy (MRV; 78.2%), and microsurgical inguinal varicocelectomy (MIV; 76.7%) demonstrated the highest effectiveness in reducing postoperative recurrence rates. In this study, sclerotherapy embolization (SE; 87.2%), MSV (77.9%), and MIV (67.7%) showed the best results in lowering the risk of hydrocele occurrence. MIV (82.9%), MSV (75.9%), and coil embolization (CE; 58.7%) were notably effective in increasing sperm motility. Moreover, CE (76.7%), subinguinal approach varicocelectomy (SV; 69.2%), and SE (55.7%) were the most effective in increasing sperm count. SE (82.5%), transabdominal laparoscopic varicocelectomy (TLV; 76.5%), and MRV (52.7%) were superior in shortening the length of hospital stay. The incidence rates of adverse events for MRV (0), SE (3.3%), and MIV (4.1%) were notably low. Cluster analyses indicated that MSV was the most effective in the treatment of varicocele. Based on the existing evidence, MSV may represent the optimal choice for varicocele surgery. However, selecting clinical surgical strategies requires consideration of various factors, including patient needs, surgeon experience, and the learning curve.
Humans
;
Male
;
Embolization, Therapeutic/methods*
;
Microsurgery/methods*
;
Randomized Controlled Trials as Topic
;
Sclerotherapy/methods*
;
Treatment Outcome
;
Urologic Surgical Procedures, Male/methods*
;
Varicocele/surgery*
9.Value of Pathogenic Detection by Next-Generation Sequencing in Bronchoalveolar Lavage Fluid on Children with Hematological Malignancies.
Bin WU ; Jie WANG ; Lan-Nan ZHANG ; Wei TANG ; Kai-Lan CHEN
Journal of Experimental Hematology 2025;33(2):569-574
OBJECTIVE:
To investigate the application value of bronchoalveolar lavage fluid (BALF) metagenomic next-generation sequencing (mNGS) in etiological diagnosis of children with hematological malignancies complicated with pneumonia.
METHODS:
We retrospectively analyzed the clinical data of children with hematological malignancies who underwent BALF mNGS pathogenic detection due to pneumonia. All patients underwent mNGS detection of bronchoalveolar lavage fluid as well as traditional methods(including sputum culture, bronchoalveolar lavage fluid culture, blood culture, serological detection of pathogens, etc.). By analyzing the results of mNGS and traditional methods, we compared key indicators such as the positive rate, etiological distribution.
RESULTS:
A total of 26 children with hematological malignancies enrolled in the study, including 12 males and 14 females, with a median age of 4.9 (1.8-14.9) years, underwent bronchoalveolar lavage (BAL) 35 times. A total of 17 pathogenic microorganisms were detected in BALF mNGS, including 9 cases of bacterial infection, 10 cases of viral infection, 3 cases of fungal infection, 2 cases of mycoplasma infection and 8 cases of mixed infection, and the most commonly detected bacteria, viruses and fungi were streptococcus pneumoniae, cytomegalovirus and pneumocystis jirovecii, respectively. The positive rate of mNGS detection (91.43%) was significantly higher than that of traditional methods detection (20%, P <0.001). A total of 25 cases were adjusted according to BALF mNGS results.
CONCLUSION
The application of BALF mNGS technology can improve the detection rate of the pathogens in children with hematological malignancies complicated with pneumonia, initially revealed the pathogen spectrum of pulmonary infection in this group, and effectively guide clinical medication, improve treatment outcomes.
Humans
;
Bronchoalveolar Lavage Fluid/microbiology*
;
Hematologic Neoplasms/complications*
;
Child
;
Child, Preschool
;
Infant
;
Retrospective Studies
;
Male
;
Female
;
Adolescent
;
High-Throughput Nucleotide Sequencing
;
Pneumonia/microbiology*
10.Analysis of Gene Mutations Distribution and Enzyme Activity of G6PD Deficiency in Newborns in Guilin Region.
Dong-Mei YANG ; Guang-Li WANG ; Dong-Lang YU ; Dan ZENG ; Hai-Qing ZHENG ; Wen-Jun TANG ; Qiao FENG ; Kai LI ; Chun-Jiang ZHU
Journal of Experimental Hematology 2025;33(5):1405-1411
OBJECTIVE:
To analyze the distribution characteristics of glucose-6-phosphate-dehydrogenase (G6PD) mutations and their enzyme activity in newborns patients with G6PD deficiency in Guilin region.
METHODS:
From July 2022 to July 2024, umbilical cord blood samples from 4 554 newborns in Guilin were analyzed for G6PD mutations using fluorescence PCR melting curve analysis. Enzyme activity was detected in 4 467 cases using the rate assay.
RESULTS:
Among 4 467 newborns who underwent G6PD activity testing, 162 newborns (3.63%) were identified as G6PD-deficient, including 142 males (6.04%) and 20 females (0.94%), the prevalence of G6PD deficiency was significantly higher in males than in females (P < 0.001). Genetic analysis of 4 554 newborns detected G6PD mutations in 410 cases (9%), including 171 males (7.13%) and 239 females (11.09%), with a significantly higher mutation detection rate in females than in males (P < 0.001). A total of nine single mutations and four compound heterozygous mutations were identified. The most common mutations were c.1388G>A (33.66%), c.1376G>T (23.66%) and c.95A>G (16.34%). Among newborns who underwent both enzyme activity and genetic mutation testing, males with G6PD mutations had significantly lower enzyme activity than that of females with G6PD mutations(P < 0.001). Specifically, among newborns carrying the mutations c.1388G>A, c.1376G>T, c.95A>G, c.1024C>T or c.871G>A, males consistently exhibited lower enzymatic activity than females with the same mutations (P < 0.001). Furthermore, in male G6PD-deficient newborns, the enzyme activity levels in those carrying c.1388G>A, c.1376G>T, c.95A>G, c.1024C>T, or c.871G>A were lower than those in both the control group and the c.519C>T group (P < 0.05).
CONCLUSION
This study provides a comprehensive profile of G6PD deficiency incidence and mutation spectrum in the Guilin region. By analyzing enzyme activity and genetic mutation results, this study provides insights into potential intervention strategies and personalized management approaches for the prevention and treatment of neonatal G6PD deficiency in the region.
Humans
;
Infant, Newborn
;
Glucosephosphate Dehydrogenase Deficiency/epidemiology*
;
Glucosephosphate Dehydrogenase/genetics*
;
Female
;
Male
;
Mutation
;
China/epidemiology*

Result Analysis
Print
Save
E-mail