1.Histopathological Insights into Demyelination and Remyelination After Spinal Cord Injury in Non-human Primates.
Junhao LIU ; Zucheng HUANG ; Kinon CHEN ; Rong LI ; Zhiping HUANG ; Junyu LIN ; Hui JIANG ; Jie LIU ; Qingan ZHU
Neuroscience Bulletin 2025;41(8):1429-1447
Demyelination and remyelination play key roles in spinal cord injury (SCI), affecting the recovery of motor and sensory functions. Research in rodent models is extensive, but the study of these processes in non-human primates is limited. Therefore, our goal was to thoroughly study the histological features of demyelination and remyelination after contusion injury of the cervical spinal cord in Macaca fascicularis. In a previous study, we created an SCI model in M. fascicularis by controlling the contusion displacement. We used Eriochrome Cyanine staining, immunohistochemical analysis, and toluidine blue staining to evaluate demyelination and remyelination. The results showed demyelination ipsilateral to the injury epicenter both rostrally and caudally, the former mainly impacting sensory pathways, while the latter primarily affected motor pathways. Toluidine blue staining showed myelin loss and axonal distension at the injury site. Schwann cell-derived myelin sheaths were only found at the center, while thinner myelin sheaths from oligodendrocytes were seen at the center and surrounding areas. Our study showed that long-lasting demyelination occurs in the spinal cord of M. fascicularis after SCI, with oligodendrocytes and Schwann cells playing a significant role in myelin sheath formation at the injury site.
Animals
;
Spinal Cord Injuries/physiopathology*
;
Demyelinating Diseases/etiology*
;
Remyelination/physiology*
;
Macaca fascicularis
;
Disease Models, Animal
;
Myelin Sheath/pathology*
;
Oligodendroglia/pathology*
;
Schwann Cells/pathology*
;
Female
;
Spinal Cord/pathology*
;
Axons/pathology*
2.Peroxisome proliferator activated receptor-α in renal injury: mechanisms and therapeutic implications.
Jing ZHOU ; Li LUO ; Junyu ZHU ; Huaping LIANG ; Shengxiang AO
Chinese Critical Care Medicine 2025;37(7):693-697
Peroxisome proliferator activated receptor-α (PPAR-α) is significantly expressed in various tissues such as the liver, kidney, myocardium, and skeletal muscle, which plays a central role in the development of various diseases by regulating key physiological processes such as energy homeostasis, redox balance, inflammatory response, and ferroptosis. As an important metabolic and excretory organ of the body, renal dysfunction can lead to water and electrolyte imbalance, toxin accumulation, and multiple system complications. The causes of kidney injury are complex and diverse, including acute injury factors (such as ischemia/reperfusion, nephrotoxic drugs, septic shock, and immune glomerulopathy), as well as chronic progressive causes [such as metabolic disease-related nephropathy, hypertensive nephropathy (HN)], and risk factors such as alcohol abuse, obesity, and aging. This review briefly describes the structure, function, and activity regulation mechanism of PPAR-α, systematically elucidates the molecular regulatory network of PPAR-α in the pathological process of kidney injury including acute kidney injury (AKI) such as renal ischemia/reperfusion injury (IRI), drug-induced AKI, sepsis-associated acute kidney injury (SA-AKI), glomerulonephritis, chronic kidney disease (CKD) such as diabetic nephropathy (DN), HN, and other kidney injury, and summarizes the mechanisms related to PPAR-α regulation of kidney injury, including regulation of metabolism, antioxidation, anti-inflammation, anti-fibrosis, and anti-ferroptosis. This review also evaluates PPAR-α's medical value as a novel therapeutic target, and aims to provide theoretical basis for the development of kidney protection strategies based on PPAR-α targeted intervention.
Humans
;
PPAR alpha/metabolism*
;
Acute Kidney Injury/therapy*
;
Animals
;
Kidney/metabolism*
3.Therapeutic results of three-dimensional aortic valve anatomic repair for regurgitant bicuspid aortic valve
Jun LI ; Chunsheng WANG ; Zheng ZUO ; Hao LAI ; Lili DONG ; Kai ZHU ; Junyu ZHAI ; Yongxin SUN ; Wenjun DING ; Tao HONG
Chinese Journal of Surgery 2024;62(11):1024-1031
Objective:To explore the surgical technique and results of three-dimensional aortic valve anatomic repair for bicuspid aortic valve (BAV) with aortic regurgitation (AR).Methods:This is a retrospective case series study. From August 2021 to December 2023, 130 consecutive patients with BAV-AR underwent aortic valve anatomic repair at the Department of Cardiothoracic Surgery, Zhongshan Hospital, Fudan University,and the data were retrospectively analyzed. There were 115 males and 15 females, aged (38.6±11.7) years (range: 15 to 67 years). All patients received modified aortic root reconstruction, to do three-dimensional root remodeling, including the basal ring, sinus of Valsalva and sino-tubular junction simultaneously. Perioperative and follow-up data were collected and analyzed. Comparisons between groups were performed using independent samples t-test, Wilcoxon paired signed-rank test, or χ2 test. Results:No patient transferred to valve replacement during the operation. The cardiopulmonary bypass time ( M(IQR)) was 109(34) minutes (range:67 to 247 minutes), and the aortic cross-clamp time was 76(26) minutes (range: 32 to 158 minutes). Preoperative transesophageal echocardiography showed 123 patients (94.6%) presented with moderate or severe regurgitation. Immediately postoperative transesophageal echocardiography showed no regurgitation in 22 patients (16.9%), trace regurgitation in 81 patients (62.3%) and mild regurgitation in 27 patients (20.8%). Follow up was completed in all patients, with a follow-up of 5.5(9.4) months (range: 0.1 to 27.6 months). No mortality was observed during follow-up. Echocardiography was obtained in 112 patients at the latest follow-up, including no regurgitation in 4 patients (3.6%), trace regurgitation in 58 patients (51.8%), mild regurgitation in 45 patients (40.2%), moderate regurgitation in 4 patients (3.6%), and severe regurgitation in 1 patient (0.9%). Conclusion:For patients with BAV-AR who have good valve quality and no severe aortic sinus dilation, the recent outcomes of three-dimensional anatomical repair technique, focusing on overall remodeling of the aortic root, are satisfactory.
4.Therapeutic results of three-dimensional aortic valve anatomic repair for regurgitant bicuspid aortic valve
Jun LI ; Chunsheng WANG ; Zheng ZUO ; Hao LAI ; Lili DONG ; Kai ZHU ; Junyu ZHAI ; Yongxin SUN ; Wenjun DING ; Tao HONG
Chinese Journal of Surgery 2024;62(11):1024-1031
Objective:To explore the surgical technique and results of three-dimensional aortic valve anatomic repair for bicuspid aortic valve (BAV) with aortic regurgitation (AR).Methods:This is a retrospective case series study. From August 2021 to December 2023, 130 consecutive patients with BAV-AR underwent aortic valve anatomic repair at the Department of Cardiothoracic Surgery, Zhongshan Hospital, Fudan University,and the data were retrospectively analyzed. There were 115 males and 15 females, aged (38.6±11.7) years (range: 15 to 67 years). All patients received modified aortic root reconstruction, to do three-dimensional root remodeling, including the basal ring, sinus of Valsalva and sino-tubular junction simultaneously. Perioperative and follow-up data were collected and analyzed. Comparisons between groups were performed using independent samples t-test, Wilcoxon paired signed-rank test, or χ2 test. Results:No patient transferred to valve replacement during the operation. The cardiopulmonary bypass time ( M(IQR)) was 109(34) minutes (range:67 to 247 minutes), and the aortic cross-clamp time was 76(26) minutes (range: 32 to 158 minutes). Preoperative transesophageal echocardiography showed 123 patients (94.6%) presented with moderate or severe regurgitation. Immediately postoperative transesophageal echocardiography showed no regurgitation in 22 patients (16.9%), trace regurgitation in 81 patients (62.3%) and mild regurgitation in 27 patients (20.8%). Follow up was completed in all patients, with a follow-up of 5.5(9.4) months (range: 0.1 to 27.6 months). No mortality was observed during follow-up. Echocardiography was obtained in 112 patients at the latest follow-up, including no regurgitation in 4 patients (3.6%), trace regurgitation in 58 patients (51.8%), mild regurgitation in 45 patients (40.2%), moderate regurgitation in 4 patients (3.6%), and severe regurgitation in 1 patient (0.9%). Conclusion:For patients with BAV-AR who have good valve quality and no severe aortic sinus dilation, the recent outcomes of three-dimensional anatomical repair technique, focusing on overall remodeling of the aortic root, are satisfactory.
5.Role and mechanism of gut microbiota and its metabolites in host defense against infection
He JIN ; Li GUAN ; Shilan LUO ; Yuanyuan ZHANG ; Jinhui YUAN ; Huaping LIANG ; Junyu ZHU
Chinese Critical Care Medicine 2024;36(3):326-331
The interaction of gut microbiota and its metabolites with the host not only plays an important role in maintaining gut homeostasis and host health, but also is a key link in responding to pathogen infections. A thorough understanding of the changes in gut microbiota and its metabolites during infection, as well as their role and mechanism in host defense against infection, is helpful to guide anti-infection treatment. This review focuses on the role of gut microbiota and their metabolites in host defense against bacterial, fungal, and viral infections, and reveals that they can exert anti-infection effects through resistance mechanisms (inducing antimicrobial substances, training immunity, inhibiting pathogen respiration, directly neutralizing pathogens, immune regulation) and tolerance mechanisms (altering energy metabolism patterns of microbiota, cell proliferation and tissue damage repair, maintaining physiological signal transduction in extraintestinal organs, inflammation regulation, maintaining the integrity of the intestinal barrier), and also summarizes measures to regulate gut microbiota against pathogen infections, in order to provide more ideas for novel anti-infection prevention and treatment strategies targeting gut microbiota and its metabolites.
6.The efficacy of simultaneous single shot-echo planar imaging and readout segment of long variable echo trains sequences diffusion-weighted imaging for diagnosis of malignant breast lesions
Hui ZHANG ; Yanfen XIN ; Yongmeng ZHU ; Junyu GUO ; Yuning PAN ; Xinzhong RUAN
Chinese Journal of Radiology 2024;58(3):279-285
Objective:To compare the image quality and the diagnostic efficiency for breast malignant lesions using simultaneous multi-slice single shot echo planar imaging (SMS+SS-EPI) and readout segment of long variable echo trains (RESOLVE) for breast diffusion-weighted imaging (DWI).Methods:This study was a cross-sectional study. Clinical and imaging data of 102 patients with breast lesion from March 2021 to February 2023 in the First Hospital Affiliated to Ningbo University were prospectively analyzed. All patients underwent routine breast MRI scans and cross-sectional RESOLVE and SMS+SS EPI sequence DWI, and the image quality of 2 types sequences of DWI was evaluated. The subjective evaluation was based on a 5-point scale, including geometric distortion, artifact blurring, fat suppression, overall image quality, and lesion conspicuity of the breast. The objective evaluation included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) value of the lesion. Wilcoxon signed rank sum test was used to compare the subjective and objective parameters between the two sequences. Finally, the receiver operating characteristic curve and area under the curve (AUC) were used to evaluate the effectiveness of ADC values for diagnosing breast malignant lesions based on two sequence images.Results:All 102 female patients had single lesions, aged from 25 to 68 years and 60 lesions were malignant and 42 were benign. The acquisition time for SMS+SS-EPI sequence imaging was 1 min 50 s, and the acquisition time for RESOLVE sequence imaging was 3 min 43 s.The subjective scores from both SMS+SS-EPI and RESOLVE sequence were over than 3 points. The geometric distortion, artifact blurring, and overall image quality scores of RESOLVE sequence images were higher than those of SMS+SS-EPI (all P<0.001). The overall lesion conspicuity score, malignant lesion conspicuity score, and benign lesion conspicuity score of DWI and ADC images combined with SMS+SS-EPI sequence were higher than those of the RESOLVE sequence (all P<0.05). There were no statistically difference in SNR, CNR, overall ADC value, malignant ADC value, and benign ADC value between SMS+SS-EPI and RESOLVE sequence DWI images of breast lesions (all P>0.05). The AUC of RESOLVE sequence ADC value in diagnosis of breast cancer was 0.973, the sensitivity was 0.929, and the specificity was 0.915; The AUC of SMS+SSC-EPI sequence ADC value in diagnosis of breast cancer was 0.956, the sensitivity was 0.977, and the specificity was 0.850. Conclusions:In breast DWI, the subjective score of SMS+SS EPI image quality can basically meet the diagnostic requirements and the conspicuity of lesions is better than that of the RESOLVE sequence. Both have good diagnostic efficacy for malignant breast lesions.
7.Comparative analysis of gut microbiota of Chinese Kunming dog, German Shepherd dog, and Belgian Malinois dog
Qingmei HU ; Luguang CHENG ; Xueting CAO ; Feng SHI ; Yunjie MA ; Liling MO ; Junyu LI ; Siyi ZHU ; Zichao LIU
Journal of Veterinary Science 2024;25(6):e85-
Objective:
This study examined the gut bacterial communities of dogs from different breeds, all kept under identical domestication conditions.
Methods:
Noninvasive sampling and 16S rRNA high-throughput sequencing were used to compare the composition and function of the gut microbiota of three dog breeds: the Chinese Kunming dog (CKD), German Shepherd dog (GSD), and Belgian Malinois dog (BMD).
Results:
The gut microbiota of the three dog breeds consisted of 257 species across 146 genera, 60 families, 35 orders, 15 classes, and 10 phyla. The dominant bacterial phyla across the three breeds were Firmicutes (57.44%), Fusobacteriota (28.86%), and Bacteroidota (7.63%), while the dominant bacterial genera across the three breeds were Peptostreptococcus (21.08%), Fusobacterium (18.50%), Lactobacillus (12.37%), and Cetobacter (10.29%). Further analysis revealed significant differences in the intestinal flora of the three breeds at the phylum and genus levels. The intestinal flora of BMD was significantly richer than that of CKD and GSD. The functional prediction and Kyoto Encyclopedia of Genes and Genomes analysis showed that the primary functions of the gut microbiota in these breeds were similar, with significant enrichment in various metabolic pathways, including carbohydrate and amino acid metabolism, secondary metabolite biosynthesis, and microbial metabolism in different environments. The intestinal flora of these breeds also played a crucial role in genetic information processing, including transcription, translation, replication, and material transport.
Conclusions
and Relevance: These results provide novel insights into the intestinal flora of intervention dogs and suggest novel methods to improve their health status, which help increase microbial diversity and normalize metabolite production in diseased dogs.
8.Comparative analysis of gut microbiota of Chinese Kunming dog, German Shepherd dog, and Belgian Malinois dog
Qingmei HU ; Luguang CHENG ; Xueting CAO ; Feng SHI ; Yunjie MA ; Liling MO ; Junyu LI ; Siyi ZHU ; Zichao LIU
Journal of Veterinary Science 2024;25(6):e85-
Objective:
This study examined the gut bacterial communities of dogs from different breeds, all kept under identical domestication conditions.
Methods:
Noninvasive sampling and 16S rRNA high-throughput sequencing were used to compare the composition and function of the gut microbiota of three dog breeds: the Chinese Kunming dog (CKD), German Shepherd dog (GSD), and Belgian Malinois dog (BMD).
Results:
The gut microbiota of the three dog breeds consisted of 257 species across 146 genera, 60 families, 35 orders, 15 classes, and 10 phyla. The dominant bacterial phyla across the three breeds were Firmicutes (57.44%), Fusobacteriota (28.86%), and Bacteroidota (7.63%), while the dominant bacterial genera across the three breeds were Peptostreptococcus (21.08%), Fusobacterium (18.50%), Lactobacillus (12.37%), and Cetobacter (10.29%). Further analysis revealed significant differences in the intestinal flora of the three breeds at the phylum and genus levels. The intestinal flora of BMD was significantly richer than that of CKD and GSD. The functional prediction and Kyoto Encyclopedia of Genes and Genomes analysis showed that the primary functions of the gut microbiota in these breeds were similar, with significant enrichment in various metabolic pathways, including carbohydrate and amino acid metabolism, secondary metabolite biosynthesis, and microbial metabolism in different environments. The intestinal flora of these breeds also played a crucial role in genetic information processing, including transcription, translation, replication, and material transport.
Conclusions
and Relevance: These results provide novel insights into the intestinal flora of intervention dogs and suggest novel methods to improve their health status, which help increase microbial diversity and normalize metabolite production in diseased dogs.
9.Role and mechanism of intestinal-liver interaction in infectious intestinal/liver injury
Hongyan XIAO ; Huaping LIANG ; Junyu ZHU
Chinese Critical Care Medicine 2024;36(6):656-659
Infection is a common medical problem at present. Different pathogens can lead to different infections. Severe infections can ultimately lead to sepsis, resulting in multiple organ dysfunction and the high mortality of patients. Therefore, studying the occurrence and development of severe infections is essential to improve the survival rate of patients. More and more studies have revealed the important role of connection between intestine and liver in infectious diseases. The maintenance of intestinal mechanical barrier and biological barrier function and the regulation of intestinal flora metabolites can reduce infectious liver injury. Bile acids are important metabolites in the liver, which can inhibit the progression of certain infectious intestinal injuries and promote intestinal damage caused by certain pathogens. In this article, the mechanism of action of the intestinal-liver axis in infection was reviewed to find a new target for the treatment of clinical infection.
10.Effects of neutrophilic granule protein on the expression of lipocalin 2 in inflammatory macrophages
Jing WANG ; Ji CHENG ; Quanwei BAO ; Junyu ZHU ; Huaping LIANG
Chinese Critical Care Medicine 2024;36(10):1033-1037
Objective:To explore the effects of neutrophilic granule protein (NGP) on the expression of lipocalin 2 (LCN2) in inflammatory macrophages and its mechanism.Methods:NGP-high-expressed RAW264.7 cells (NGP/RAW cells) and negative control RAW264.7 cells (NC/RAW cells) were cultured in vitro. Primary peritoneal macrophages of NGP-high-expressed mice and wild-type C57BL/6 mice were extracted, then cultured in vitro. The cell inflammatory model was established by stimulating with 10 mg/L lipopolysaccharide (LPS, LPS group), and the phosphate buffer solution (PBS) control group was set up. Enzyme-linked immunosorbent assay (ELISA) was used to detect the level of LCN2 in different types of cells. The protein expression of phosphorylated signal transduction and activator of transcription 1 (p-STAT1) was detected with Western blotting. Other NGP/RAW cells and NC/RAW cells were treated with 10 mg/L LPS, 5 mg/L STAT1 pathway inhibitor (fludarabine)+10 mg/L LPS, respectively. The PBS control group was set up. ELISA was used to detect the level of LCN2. Results:In different types of cells, the levels of LCN2 were increased significantly after LPS stimulation in the LPS group as compared with those in the PBS control group, and peaked at 24 hours (μmol/L: 25.61±1.02 vs. 0.46±0.02 in NC/RAW cells, 74.51±2.14 vs. 0.25±0.04 in NGP/RAW cells, 10.13±0.22 vs. 0.01±0.01 in primary macrophages of wild-type C57BL/6 mice, 28.35±0.61 vs. 0.08±0.01 in primary macrophages of NGP-high-expressed mice, all P < 0.05), indicating that the expression of LCN2 in macrophages altered during inflammation reaction. The level of LCN2 in NGP/RAW cells was found significantly increased at different time points after LPS stimulation comparing with that in NC/RAW cells (μmol/L: 8.32±0.22 vs. 3.12±0.11 at 6 hours, 23.12±0.86 vs. 8.12±0.32 at 12 hours, 74.51±2.14 vs. 25.61±1.02 at 24 hours, all P < 0.05), along with the expression of p-STAT1 was significantly up-regulated. The level of LCN2 in the primary macrophages of NGP-high-expressed mice was also significantly increased at 24 hours after LPS stimulation comparing with that in the primary macrophages of wild-type C57BL/6 mice (μmol/L: 28.35±0.61 vs. 10.13±0.22, P < 0.05). However, after pretreated with STAT1 pathway inhibitors, the production of LCN2 in NGP/RAW cells was decreased significantly comparing with that in the LPS group (μmol/L: 6.81±0.19 vs. 22.54±0.58, P < 0.05). But the inhibitors had no significant effect on LCN2 production in NC/RAW cells showing no significant difference as compared with LPS group (μmol/L: 8.04±0.20 vs. 7.86±0.15, P > 0.05), indicating that NGP could up-regulate the expression of LCN2 in macrophages stimulated by LPS by promoting STAT1 activation. Conclusion:NGP could positively regulate LCN2 expression in inflammatory macrophages by activating STAT1 pathway.

Result Analysis
Print
Save
E-mail