1.The technology of fecal microbiota transplantation and its application progress
Shuo YUAN ; Yi-fan ZHANG ; Peng GAO ; Jun LEI ; Ying-yuan LU ; Peng-fei TU ; Yong JIANG
Acta Pharmaceutica Sinica 2025;60(1):82-95
Fecal microbiota transplantation (FMT) technology originated in China during the Eastern Jin Dynasty and has rapidly developed over the past two decades, becoming a primary method for studying the causal relationship between gut microbiota and the occurrence and progression of diseases. At the same time, the therapeutic effects of FMT in the field of gastrointestinal diseases have gained widespread recognition and are gradually expanding into other disease areas. The FMT procedure is relatively complex, and there is currently no standardized method; its success is influenced by various factors, including the donor, recipient, processing of the fecal material, and the method of implantation. Given the increasingly recognized relationship between gut microbiota and various diseases, FMT has become a research hotspot in both scientific studies and clinical applications, achieving a series of significant advancements. To help researchers better understand this technology, this paper will outline the development history of FMT, summarize common operational methods in research and clinical settings, review its application progress, and look forward to future development directions.
2.The Ferroptosis-inducing Compounds in Triple Negative Breast Cancer
Xin-Die WANG ; Da-Li FENG ; Xiang CUI ; Su ZHOU ; Peng-Fei ZHANG ; Zhi-Qiang GAO ; Li-Li ZOU ; Jun WANG
Progress in Biochemistry and Biophysics 2025;52(4):804-819
Ferroptosis, a programmed cell death modality discovered and defined in the last decade, is primarily induced by iron-dependent lipid peroxidation. At present, it has been found that ferroptosis is involved in various physiological functions such as immune regulation, growth and development, aging, and tumor suppression. Especially its role in tumor biology has attracted extensive attention and research. Breast cancer is one of the most common female tumors, characterized by high heterogeneity and complex genetic background. Triple negative breast cancer (TNBC) is a special type of breast cancer, which lacks conventional breast cancer treatment targets and is prone to drug resistance to existing chemotherapy drugs and has a low cure rate after progression and metastasis. There is an urgent need to find new targets or develop new drugs. With the increase of studies on promoting ferroptosis in breast cancer, it has gradually attracted attention as a treatment strategy for breast cancer. Some studies have found that certain compounds and natural products can act on TNBC, promote their ferroptosis, inhibit cancer cells proliferation, enhance sensitivity to radiotherapy, and improve resistance to chemotherapy drugs. To promote the study of ferroptosis in TNBC, this article summarized and reviewed the compounds and natural products that induce ferroptosis in TNBC and their mechanisms of action. We started with the exploration of the pathways of ferroptosis, with particular attention to the System Xc--cystine-GPX4 pathway and iron metabolism. Then, a series of compounds, including sulfasalazine (SAS), metformin, and statins, were described in terms of how they interact with cells to deplete glutathione (GSH), thereby inhibiting the activity of glutathione peroxidase 4 (GPX4) and preventing the production of lipid peroxidases. The disruption of the cellular defense against oxidative stress ultimately results in the death of TNBC cells. We have also our focus to the realm of natural products, exploring the therapeutic potential of traditional Chinese medicine extracts for TNBC. These herbal extracts exhibit multi-target effects and good safety, and have shown promising capabilities in inducing ferroptosis in TNBC cells. We believe that further exploration and characterization of these natural compounds could lead to the development of a new generation of cancer therapeutics. In addition to traditional chemotherapy, we discussed the role of drug delivery systems in enhancing the efficacy and reducing the toxicity of ferroptosis inducers. Nanoparticles such as exosomes and metal-organic frameworks (MOFs) can improve the solubility and bioavailability of these compounds, thereby expanding their therapeutic potential while minimizing systemic side effects. Although preclinical data on ferroptosis inducers are relatively robust, their translation into clinical practice remains in its early stages. We also emphasize the urgent need for more in-depth and comprehensive research to understand the complex mechanisms of ferroptosis in TNBC. This is crucial for the rational design and development of clinical trials, as well as for leveraging ferroptosis to improve patient outcomes. Hoping the above summarize and review could provide references for the research and development of lead compounds for the treatment for TNBC.
3.Effectiveness and safety of augmentative plating technique in managing nonunion following intramedullary nailing of long bones in the lower extremity: A systematic review and meta-analysis.
Cong-Xiao FU ; Hao GAO ; Jun REN ; Hu WANG ; Shuai-Kun LU ; Guo-Liang WANG ; Zhen-Feng ZHU ; Yun-Yan LIU ; Wen LUO ; Yong ZHANG ; Yun-Fei ZHANG
Chinese Journal of Traumatology 2025;28(3):164-174
PURPOSE:
To methodically assess the effectiveness of augmentative plating (AP) and exchange nailing (EN) in managing nonunion following intramedullary nailing for long bone fractures of the lower extremity.
METHODS:
PubMed, EMBASE, Web of Science, and the Cochrane Library were searched to gather clinical studies regarding the use of AP and EN techniques in the treatment of nonunion following intramedullary nailing of lower extremity long bones. The search was conducted up until May 2023. The original studies underwent an independent assessment of their quality, a process conducted utilizing the Newcastle-Ottawa scale. Data were retrieved from these studies, and meta-analysis was executed utilizing Review Manager 5.3.
RESULTS:
This meta-analysis included 8 studies involving 661 participants, with 305 in the AP group and 356 in the EN group. The results of the meta-analysis demonstrated that the AP group exhibited a higher rate of union (odds ratio: 8.61, 95% confidence intervals (CI): 4.12 - 17.99, p < 0.001), shorter union time (standardized mean difference (SMD): -1.08, 95% CI: -1.79 - -0.37, p = 0.003), reduced duration of the surgical procedure (SMD: -0.56, 95% CI: -0.93 - -0.19, p = 0.003), less bleeding (SMD: -1.5, 95% CI: -2.81 - -0.18, p = 0.03), and a lower incidence of complications (relative risk: -0.17, 95% CI: -0.27 - -0.06, p = 0.001). In the subgroup analysis, the time for union in the AP group in nonisthmal and isthmal nonunion of lower extremity long bones was shorter compared to the EN group (nonisthmal SMD: -1.94, 95% CI: -3.28 - -0.61, p < 0.001; isthmal SMD: -1.08, 95% CI: -1.64 - -0.52, p = 0.002).
CONCLUSION
In the treatment of nonunion in diaphyseal fractures of the long bones in the lower extremity, the AP approach is superior to EN, both intraoperatively (with reduced duration of the surgical procedure and diminished blood loss) and postoperatively (with an elevated union rate, shorter union time, and lower incidence of complications). Specifically, in the management of nonunion of lower extremity long bones with non-isthmal and isthmal intramedullary nails, AP demonstrated shorter union time in comparison to EN.
Humans
;
Bone Nails/adverse effects*
;
Bone Plates/adverse effects*
;
Femoral Fractures/surgery*
;
Fracture Fixation, Intramedullary/methods*
;
Fractures, Ununited/surgery*
;
Lower Extremity/injuries*
4.Analysis of risk factors, pathogenic bacteria characteristics, and drug resistance of postoperative surgical site infection in adults with limb fractures.
Yan-Jun WANG ; Zi-Hou ZHAO ; Shuai-Kun LU ; Guo-Liang WANG ; Shan-Jin MA ; Lin-Hu WANG ; Hao GAO ; Jun REN ; Zhong-Wei AN ; Cong-Xiao FU ; Yong ZHANG ; Wen LUO ; Yun-Fei ZHANG
Chinese Journal of Traumatology 2025;28(4):241-251
PURPOSE:
We carried out the study aiming to explore and analyze the risk factors, the distribution of pathogenic bacteria, and their antibiotic-resistance characteristics influencing the occurrence of surgical site infection (SSI), to provide valuable assistance for reducing the incidence of SSI after traumatic fracture surgery.
METHODS:
A retrospective case-control study enrolling 3978 participants from January 2015 to December 2019 receiving surgical treatment for traumatic fractures was conducted at Tangdu Hospital of Air Force Medical University. Baseline data, demographic characteristics, lifestyles, variables related to surgical treatment, and pathogen culture were harvested and analyzed. Univariate analyses and multivariate logistic regression analyses were used to reveal the independent risk factors of SSI. A bacterial distribution histogram and drug-sensitive heat map were drawn to describe the pathogenic characteristics.
RESULTS:
Included 3978 patients 138 of them developed SSI with an incidence rate of 3.47% postoperatively. By logistic regression analysis, we found that variables such as gender (males) (odds ratio (OR) = 2.012, 95% confidence interval (CI): 1.235 - 3.278, p = 0.005), diabetes mellitus (OR = 5.848, 95% CI: 3.513 - 9.736, p < 0.001), hypoproteinemia (OR = 3.400, 95% CI: 1.280 - 9.031, p = 0.014), underlying disease (OR = 5.398, 95% CI: 2.343 - 12.438, p < 0.001), hormonotherapy (OR = 11.718, 95% CI: 6.269 - 21.903, p < 0.001), open fracture (OR = 29.377, 95% CI: 9.944 - 86.784, p < 0.001), and intraoperative transfusion (OR = 2.664, 95% CI: 1.572 - 4.515, p < 0.001) were independent risk factors for SSI, while, aged over 59 years (OR = 0.132, 95% CI: 0.059 - 0.296, p < 0.001), prophylactic antibiotics use (OR = 0.082, 95% CI: 0.042 - 0.164, p < 0.001) and vacuum sealing drainage use (OR = 0.036, 95% CI: 0.010 - 0.129, p < 0.001) were protective factors. Pathogens results showed that 301 strains of 38 species of bacteria were harvested, among which 178 (59.1%) strains were Gram-positive bacteria, and 123 (40.9%) strains were Gram-negative bacteria. Staphylococcus aureus (108, 60.7%) and Enterobacter cloacae (38, 30.9%) accounted for the largest proportion. The susceptibility of Gram-positive bacteria to Vancomycin and Linezolid was almost 100%. The susceptibility of Gram-negative bacteria to Imipenem, Amikacin, and Meropenem exceeded 73%.
CONCLUSION
Orthopedic surgeons need to develop appropriate surgical plans based on the risk factors and protective factors associated with postoperative SSI to reduce its occurrence. Meanwhile, it is recommended to strengthen blood glucose control in the early stage of admission and for surgeons to be cautious and scientific when choosing antibiotic therapy in clinical practice.
Humans
;
Surgical Wound Infection/epidemiology*
;
Male
;
Female
;
Risk Factors
;
Retrospective Studies
;
Middle Aged
;
Adult
;
Case-Control Studies
;
Fractures, Bone/surgery*
;
Aged
;
Drug Resistance, Bacterial
;
Logistic Models
;
Anti-Bacterial Agents/therapeutic use*
;
Incidence
;
Bacteria/drug effects*
5.Effect and Safety of a New Conditioning Regimen with Chidamide and BEAM for Autologous Hematopoietic Stem Cell Transplantation in Lymphoma.
Sen LI ; Jin-Jie GAO ; Yan LI ; Fei DONG ; Qi-Hui LI ; Wei ZHAO ; Wei WAN ; Ping YANG ; Ji-Jun WANG ; Hong-Mei JING
Journal of Experimental Hematology 2025;33(1):121-126
OBJECTIVE:
To assess the efficacy and safety of a new conditioning regimen with chidamide and BEAM for autologous hematopoietic stem cell transplantation (AHSCT) in patients with lymphoma.
METHODS:
Medical records and further follow-up data from 85 patients with lymphoma from May 2015 to September 2020 in our hospital were retrospectively collected and analyzed.
RESULTS:
Among 85 patients, 52 cases accepted BEAM regimen and 33 cases accepted CBEAM followed by AHSCT. In CBEAM group, 18 patients (54.5%) received AHSCT as salvage therapy, while only 26.9% (14 cases) for salvage in BEAM group ( P < 0.01). CBEAM conditioning resulted in shorter neutrophil engraftment of 2 days, while no significant difference was found in platelet engraftment. Although the incidence of liver impairment was higher in CBEAM group (12.1%), the grade of impairment was only Ⅰ to Ⅱ. The two conditioning regimens both achieved good complete remission rate of over 90%, and no transplant-related death occurred. The median follow-up time in the CBEAM group was 18(12, 22) months, and 39(20, 59) months in the BEAM group. There were no significantly differences in 2-year progression-free survival (PFS) and overall survival (OS) rate between the two groups (P >0.05). In patients with refractory or relapsed non-Hodgkin lymphoma, the 2-year PFS rate after transplantation in BEAM group and CBEAM group was 74.1% and 92.9%, respectively (P >0.05), indicating that chidamide may have certain advantages in prolonging PFS.
CONCLUSION
CBEAM conditioning regimen has a good efficacy and safety in lymphoma patients before AHSCT, especially in refractory and relapsed non-Hodgkin lymphoma patients, suggesting that it could serve as an alternative conditioning regimen prior to AHSCT for lymphoma.
Humans
;
Hematopoietic Stem Cell Transplantation
;
Transplantation Conditioning/methods*
;
Transplantation, Autologous
;
Retrospective Studies
;
Aminopyridines/therapeutic use*
;
Lymphoma/therapy*
;
Benzamides/therapeutic use*
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Male
;
Female
;
Cytarabine/therapeutic use*
;
Melphalan/therapeutic use*
;
Adult
;
Middle Aged
;
Podophyllotoxin/therapeutic use*
;
Carmustine
;
Etoposide
6.Chinese agarwood petroleum ether extract suppressed gastric cancer progression via up-regulation of DNA damage-induced G0/G1 phase arrest and HO-1-mediated ferroptosis.
Lishan OUYANG ; Xuejiao WEI ; Fei WANG ; Huiming HUANG ; Xinyu QIU ; Zhuguo WANG ; Peng TAN ; Yufeng GAO ; Ruoxin ZHANG ; Jun LI ; Zhongdong HU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(10):1210-1220
Gastric cancer (GC) is characterized by high morbidity and mortality rates. Chinese agarwood comprises the resin-containing wood of Aquilaria sinensis (Lour.) Gilg., traditionally utilized for treating asthma, cardiac ischemia, and tumors. However, comprehensive research regarding its anti-GC effects and underlying mechanisms remains limited. In this study, Chinese agarwood petroleum ether extract (CAPEE) demonstrated potent cytotoxicity against human GC cells, with half maximal inhibitory concentration (IC50) values for AGS, HGC27, and MGC803 cells of 2.89, 2.46, and 2.37 μg·mL-1, respectively, at 48 h. CAPEE significantly induced apoptosis in these GC cells, with B-cell lymphoma-2 (BCL-2) associated X protein (BAX)/BCL-2 antagonist killer 1 (BAK) likely mediating CAPEE-induced apoptosis. Furthermore, CAPEE induced G0/G1 phase cell cycle arrest in human GC cells via activation of the deoxyribonucleic acid (DNA) damage-p21-cyclin D1/cyclin-dependent kinase 4 (CDK4) signaling axis, and increased Fe2+, lipid peroxides and reactive oxygen species (ROS) levels, thereby inducing ferroptosis. Ribonucleic acid (RNA) sequencing, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blotting analyses revealed CAPEE-mediated upregulation of heme oxygenase-1 (HO-1) in human GC cells. RNA interference studies demonstrated that HO-1 knockdown reduced CAPEE sensitivity and inhibited CAPEE-induced ferroptosis in human GC cells. Additionally, CAPEE administration exhibited robust in vivo anti-GC activity without significant toxicity in nude mice while inhibiting tumor cell growth and promoting apoptosis in tumor tissues. These findings indicate that CAPEE suppresses human GC cell growth through upregulation of the DNA damage-p21-cyclin D1/CDK4 signaling axis and HO-1-mediated ferroptosis, suggesting its potential as a candidate drug for GC treatment.
Animals
;
Humans
;
Mice
;
Antineoplastic Agents, Phytogenic
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Cyclin D1/genetics*
;
Cyclin-Dependent Kinase 4/genetics*
;
DNA Damage/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Ferroptosis/drug effects*
;
G1 Phase Cell Cycle Checkpoints/drug effects*
;
Heme Oxygenase-1/genetics*
;
Mice, Inbred BALB C
;
Mice, Nude
;
Plant Extracts/pharmacology*
;
Stomach Neoplasms/physiopathology*
;
Thymelaeaceae/chemistry*
;
Up-Regulation/drug effects*
7.Association of Body Mass Index with All-Cause Mortality and Cause-Specific Mortality in Rural China: 10-Year Follow-up of a Population-Based Multicenter Prospective Study.
Juan Juan HUANG ; Yuan Zhi DI ; Ling Yu SHEN ; Jian Guo LIANG ; Jiang DU ; Xue Fang CAO ; Wei Tao DUAN ; Ai Wei HE ; Jun LIANG ; Li Mei ZHU ; Zi Sen LIU ; Fang LIU ; Shu Min YANG ; Zu Hui XU ; Cheng CHEN ; Bin ZHANG ; Jiao Xia YAN ; Yan Chun LIANG ; Rong LIU ; Tao ZHU ; Hong Zhi LI ; Fei SHEN ; Bo Xuan FENG ; Yi Jun HE ; Zi Han LI ; Ya Qi ZHAO ; Tong Lei GUO ; Li Qiong BAI ; Wei LU ; Qi JIN ; Lei GAO ; He Nan XIN
Biomedical and Environmental Sciences 2025;38(10):1179-1193
OBJECTIVE:
This study aimed to explore the association between body mass index (BMI) and mortality based on the 10-year population-based multicenter prospective study.
METHODS:
A general population-based multicenter prospective study was conducted at four sites in rural China between 2013 and 2023. Multivariate Cox proportional hazards models and restricted cubic spline analyses were used to assess the association between BMI and mortality. Stratified analyses were performed based on the individual characteristics of the participants.
RESULTS:
Overall, 19,107 participants with a sum of 163,095 person-years were included and 1,910 participants died. The underweight (< 18.5 kg/m 2) presented an increase in all-cause mortality (adjusted hazards ratio [ aHR] = 2.00, 95% confidence interval [ CI]: 1.66-2.41), while overweight (≥ 24.0 to < 28.0 kg/m 2) and obesity (≥ 28.0 kg/m 2) presented a decrease with an aHR of 0.61 (95% CI: 0.52-0.73) and 0.51 (95% CI: 0.37-0.70), respectively. Overweight ( aHR = 0.76, 95% CI: 0.67-0.86) and mild obesity ( aHR = 0.72, 95% CI: 0.59-0.87) had a positive impact on mortality in people older than 60 years. All-cause mortality decreased rapidly until reaching a BMI of 25.7 kg/m 2 ( aHR = 0.95, 95% CI: 0.92-0.98) and increased slightly above that value, indicating a U-shaped association. The beneficial impact of being overweight on mortality was robust in most subgroups and sensitivity analyses.
CONCLUSION
This study provides additional evidence that overweight and mild obesity may be inversely related to the risk of death in individuals older than 60 years. Therefore, it is essential to consider age differences when formulating health and weight management strategies.
Humans
;
Body Mass Index
;
China/epidemiology*
;
Male
;
Female
;
Middle Aged
;
Prospective Studies
;
Rural Population/statistics & numerical data*
;
Aged
;
Follow-Up Studies
;
Adult
;
Mortality
;
Cause of Death
;
Obesity/mortality*
;
Overweight/mortality*
8.Research progress on the role of SHP-2 in tumor-associated macrophages
Xueliang WU ; Jianchun FAN ; Fei GUO ; Qi ZHANG ; Jun XUE ; Ximo WANG ; Guangyuan SUN ; Jianling LIU ; Lei HAN ; Shuquan GAO
Chinese Journal of Comparative Medicine 2024;34(1):171-176
Tumor-associated macrophages(TAMs)are the predominant cell group in the tumor microenvironment(TME)and are the most important regulatory cells of immune system suppression and tumor cell proliferation in TIME.Src homology-2 domain-containing protein tyrosine phosphatase 2(SHP-2)is a non-receptor protein tyrosine phosphatase that plays an important role in the transmission of signals from the cell surface to the nucleus.SHP-2 is a key intracellular regulatory factor mediating cell proliferation and differentiation and is involved in a variety of growth factor and cytokine signaling pathways linking the cell surface to the nucleus.Recent studies have shown that SHP-2 is a key enzyme in determining the function of TAMs,but because of its variable function,it plays different or even opposite roles in different solid TMEs.This paper reviews the function of SHP-2 in TAMs and related solid tumors to provide a comprehensive reference for tumor immunity and targeted therapy research.
9.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
10.Study of honey-processed Hedysari Radix on the protection of intestinal mucosal barrier in rats with spleen deficiency
Mao-Mao WANG ; Qin-Jie SONG ; Zhe WANG ; Ding-Cai MA ; Yu-Gui ZHANG ; Ting LIU ; Zhuan-Hong ZHANG ; Fei-Yun GAO ; Yan-Jun WANG ; Yue-Feng LI
The Chinese Journal of Clinical Pharmacology 2024;40(15):2231-2235
Objective To explore the protective mechanism of honey-processed Hedysari Radix in regulating intestinal mucosal injury in rats with spleen qi deficiency.Methods The three-factor composite modeling method of bitter cold diarrhea,overwork and hunger and satiety disorder was used to construct a spleen qi deficiency model rats.After the model was successfully made,they were randomly divided into model group,honey-processed Hedysari Radix group and probiotic group,with 15 animals in each group.Another 15 normal rats were taken as the blank group.The honey-processed Hedysari Radix group was given 12.6 g·kg-1 water decoction of honey-processed Hedysari Radix by gavage,the probiotics group was given Bifidobacterium Lactobacillus triple viable tablets suspension at a dose of 0.625 g·kg-1,and the blank group and the model group were given the same dose of distilled water.The rats in the four groups were administered once a day for 15 days.Enzyme-linked immunosorbent assay was used to detect diamine oxidase(DAO)in serum,D-lactic acid(D-LA),secretory immunoglobulin A factor,and Western blotting was used to detect the expression levels of AMP-activated protein kinase(AMPK),zonula occludens-1(ZO-1)and occludin in colon tissues.Results The serum levels of DAO in the blank group,model group,honey-processed Hedysari Radix group and probiotic group were(138.93±9.78),(187.95±12.90),(147.21±6.92)and(166.47±3.37)pg·mL-1;the contents of D-LA were(892.23±49.17),(1 099.84±137.64),(956.56±86.04)and(989.61±51.75)μg·L-1;the contents of SIgA in colon tissues were(14.04±1.42),(11.47±2.39),(11.84±1.49)and(12.93±1.65)μg·mL-1;the relative expression levels of ZO-1 protein in colon tissues were 1.18±0.11,0.42±0.04,0.77±0.05 and 0.95±0.07;the relative expression levels of occludin protein were 1.35±0.31,0.61±0.17,1.19±0.19 and 0.88±0.13;the relative expression levels of AMPK protein were 0.91±0.02,0.35±0.09,0.74±0.08 and 0.59±0.11.Compared with the model group,there were significant differences in the serum content of DAO and D-LA,SIgA content in colon,and the content of ZO-1,occludin and AMPK protein in the honey-processed Hedysari Radix group(P<0.01,P<0.05).Conclusion Honey-processed Hedysari Radix can enhance the protective effect on the intestinal mucosa of rats with spleen qi deficiency by regulating the expression of related inflammatory cytokines,intestinal mucosal upper cell enzymes and tight junction proteins in rats with spleen qi deficiency.

Result Analysis
Print
Save
E-mail