1.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
2.Memory Decline and Aberration of Synaptic Proteins in X-Linked Moesin Knockout Male Mice
Hua CAI ; Seong Mi LEE ; Yura CHOI ; Bomlee LEE ; Soo Jung IM ; Dong Hyeon KIM ; Hyung Jun CHOI ; Jin Hee KIM ; Yeni KIM ; Boo Ahn SHIN ; Songhee JEON
Psychiatry Investigation 2025;22(1):10-25
Objective:
This study aims to investigate may moesin deficiency resulted in neurodevelopmental abnormalities caused by negative impact on synaptic signaling ultimately leading to synaptic structure and plasticity.
Methods:
Behavioral assessments measured neurodevelopment (surface righting, negative geotaxis, cliff avoidance), anxiety (open field test, elevated plus maze test), and memory (passive avoidance test, Y-maze test) in moesin-knockout mice (KO) compared to wild-type mice (WT). Whole exome sequencing (WES) of brain (KO vs. WT) and analysis of synaptic proteins were performed to determine the disruption of signal pathways downstream of moesin. Risperidone, a therapeutic agent, was utilized to reverse the neurodevelopmental aberrance in moesin KO.
Results:
Moesin-KO pups exhibited decrease in the surface righting ability on postnatal day 7 (p<0.05) and increase in time spent in the closed arms (p<0.01), showing increased anxiety-like behavior. WES revealed mutations in pathway aberration in neuron projection, actin filament-based processes, and neuronal migration in KO. Decreased cell viability (p<0.001) and expression of soluble NSF adapter protein 25 (SNAP25) (p<0.001) and postsynaptic density protein 95 (PSD95) (p<0.01) was observed in days in vitro 7 neurons. Downregulation of synaptic proteins, and altered phosphorylation levels of Synapsin I, mammalian uncoordinated 18 (MUNC18), extracellular signal-regulated kinase (ERK), and cAMP response element-binding protein (CREB) was observed in KO cortex and hippocampus. Risperidone reversed the memory impairment in the passive avoidance test and the spontaneous alternation percentage in the Y maze test. Risperidone also restored the reduced expression of PSD95 (p<0.01) and the phosphorylation of Synapsin at Ser605 (p<0.05) and Ser549 (p<0.001) in the cortex of moesin-KO.
Conclusion
Moesin deficiency leads to neurodevelopmental delay and memory decline, which may be caused through altered regulation in synaptic proteins and function.
3.Memory Decline and Aberration of Synaptic Proteins in X-Linked Moesin Knockout Male Mice
Hua CAI ; Seong Mi LEE ; Yura CHOI ; Bomlee LEE ; Soo Jung IM ; Dong Hyeon KIM ; Hyung Jun CHOI ; Jin Hee KIM ; Yeni KIM ; Boo Ahn SHIN ; Songhee JEON
Psychiatry Investigation 2025;22(1):10-25
Objective:
This study aims to investigate may moesin deficiency resulted in neurodevelopmental abnormalities caused by negative impact on synaptic signaling ultimately leading to synaptic structure and plasticity.
Methods:
Behavioral assessments measured neurodevelopment (surface righting, negative geotaxis, cliff avoidance), anxiety (open field test, elevated plus maze test), and memory (passive avoidance test, Y-maze test) in moesin-knockout mice (KO) compared to wild-type mice (WT). Whole exome sequencing (WES) of brain (KO vs. WT) and analysis of synaptic proteins were performed to determine the disruption of signal pathways downstream of moesin. Risperidone, a therapeutic agent, was utilized to reverse the neurodevelopmental aberrance in moesin KO.
Results:
Moesin-KO pups exhibited decrease in the surface righting ability on postnatal day 7 (p<0.05) and increase in time spent in the closed arms (p<0.01), showing increased anxiety-like behavior. WES revealed mutations in pathway aberration in neuron projection, actin filament-based processes, and neuronal migration in KO. Decreased cell viability (p<0.001) and expression of soluble NSF adapter protein 25 (SNAP25) (p<0.001) and postsynaptic density protein 95 (PSD95) (p<0.01) was observed in days in vitro 7 neurons. Downregulation of synaptic proteins, and altered phosphorylation levels of Synapsin I, mammalian uncoordinated 18 (MUNC18), extracellular signal-regulated kinase (ERK), and cAMP response element-binding protein (CREB) was observed in KO cortex and hippocampus. Risperidone reversed the memory impairment in the passive avoidance test and the spontaneous alternation percentage in the Y maze test. Risperidone also restored the reduced expression of PSD95 (p<0.01) and the phosphorylation of Synapsin at Ser605 (p<0.05) and Ser549 (p<0.001) in the cortex of moesin-KO.
Conclusion
Moesin deficiency leads to neurodevelopmental delay and memory decline, which may be caused through altered regulation in synaptic proteins and function.
4.Memory Decline and Aberration of Synaptic Proteins in X-Linked Moesin Knockout Male Mice
Hua CAI ; Seong Mi LEE ; Yura CHOI ; Bomlee LEE ; Soo Jung IM ; Dong Hyeon KIM ; Hyung Jun CHOI ; Jin Hee KIM ; Yeni KIM ; Boo Ahn SHIN ; Songhee JEON
Psychiatry Investigation 2025;22(1):10-25
Objective:
This study aims to investigate may moesin deficiency resulted in neurodevelopmental abnormalities caused by negative impact on synaptic signaling ultimately leading to synaptic structure and plasticity.
Methods:
Behavioral assessments measured neurodevelopment (surface righting, negative geotaxis, cliff avoidance), anxiety (open field test, elevated plus maze test), and memory (passive avoidance test, Y-maze test) in moesin-knockout mice (KO) compared to wild-type mice (WT). Whole exome sequencing (WES) of brain (KO vs. WT) and analysis of synaptic proteins were performed to determine the disruption of signal pathways downstream of moesin. Risperidone, a therapeutic agent, was utilized to reverse the neurodevelopmental aberrance in moesin KO.
Results:
Moesin-KO pups exhibited decrease in the surface righting ability on postnatal day 7 (p<0.05) and increase in time spent in the closed arms (p<0.01), showing increased anxiety-like behavior. WES revealed mutations in pathway aberration in neuron projection, actin filament-based processes, and neuronal migration in KO. Decreased cell viability (p<0.001) and expression of soluble NSF adapter protein 25 (SNAP25) (p<0.001) and postsynaptic density protein 95 (PSD95) (p<0.01) was observed in days in vitro 7 neurons. Downregulation of synaptic proteins, and altered phosphorylation levels of Synapsin I, mammalian uncoordinated 18 (MUNC18), extracellular signal-regulated kinase (ERK), and cAMP response element-binding protein (CREB) was observed in KO cortex and hippocampus. Risperidone reversed the memory impairment in the passive avoidance test and the spontaneous alternation percentage in the Y maze test. Risperidone also restored the reduced expression of PSD95 (p<0.01) and the phosphorylation of Synapsin at Ser605 (p<0.05) and Ser549 (p<0.001) in the cortex of moesin-KO.
Conclusion
Moesin deficiency leads to neurodevelopmental delay and memory decline, which may be caused through altered regulation in synaptic proteins and function.
5.Memory Decline and Aberration of Synaptic Proteins in X-Linked Moesin Knockout Male Mice
Hua CAI ; Seong Mi LEE ; Yura CHOI ; Bomlee LEE ; Soo Jung IM ; Dong Hyeon KIM ; Hyung Jun CHOI ; Jin Hee KIM ; Yeni KIM ; Boo Ahn SHIN ; Songhee JEON
Psychiatry Investigation 2025;22(1):10-25
Objective:
This study aims to investigate may moesin deficiency resulted in neurodevelopmental abnormalities caused by negative impact on synaptic signaling ultimately leading to synaptic structure and plasticity.
Methods:
Behavioral assessments measured neurodevelopment (surface righting, negative geotaxis, cliff avoidance), anxiety (open field test, elevated plus maze test), and memory (passive avoidance test, Y-maze test) in moesin-knockout mice (KO) compared to wild-type mice (WT). Whole exome sequencing (WES) of brain (KO vs. WT) and analysis of synaptic proteins were performed to determine the disruption of signal pathways downstream of moesin. Risperidone, a therapeutic agent, was utilized to reverse the neurodevelopmental aberrance in moesin KO.
Results:
Moesin-KO pups exhibited decrease in the surface righting ability on postnatal day 7 (p<0.05) and increase in time spent in the closed arms (p<0.01), showing increased anxiety-like behavior. WES revealed mutations in pathway aberration in neuron projection, actin filament-based processes, and neuronal migration in KO. Decreased cell viability (p<0.001) and expression of soluble NSF adapter protein 25 (SNAP25) (p<0.001) and postsynaptic density protein 95 (PSD95) (p<0.01) was observed in days in vitro 7 neurons. Downregulation of synaptic proteins, and altered phosphorylation levels of Synapsin I, mammalian uncoordinated 18 (MUNC18), extracellular signal-regulated kinase (ERK), and cAMP response element-binding protein (CREB) was observed in KO cortex and hippocampus. Risperidone reversed the memory impairment in the passive avoidance test and the spontaneous alternation percentage in the Y maze test. Risperidone also restored the reduced expression of PSD95 (p<0.01) and the phosphorylation of Synapsin at Ser605 (p<0.05) and Ser549 (p<0.001) in the cortex of moesin-KO.
Conclusion
Moesin deficiency leads to neurodevelopmental delay and memory decline, which may be caused through altered regulation in synaptic proteins and function.
6.Memory Decline and Aberration of Synaptic Proteins in X-Linked Moesin Knockout Male Mice
Hua CAI ; Seong Mi LEE ; Yura CHOI ; Bomlee LEE ; Soo Jung IM ; Dong Hyeon KIM ; Hyung Jun CHOI ; Jin Hee KIM ; Yeni KIM ; Boo Ahn SHIN ; Songhee JEON
Psychiatry Investigation 2025;22(1):10-25
Objective:
This study aims to investigate may moesin deficiency resulted in neurodevelopmental abnormalities caused by negative impact on synaptic signaling ultimately leading to synaptic structure and plasticity.
Methods:
Behavioral assessments measured neurodevelopment (surface righting, negative geotaxis, cliff avoidance), anxiety (open field test, elevated plus maze test), and memory (passive avoidance test, Y-maze test) in moesin-knockout mice (KO) compared to wild-type mice (WT). Whole exome sequencing (WES) of brain (KO vs. WT) and analysis of synaptic proteins were performed to determine the disruption of signal pathways downstream of moesin. Risperidone, a therapeutic agent, was utilized to reverse the neurodevelopmental aberrance in moesin KO.
Results:
Moesin-KO pups exhibited decrease in the surface righting ability on postnatal day 7 (p<0.05) and increase in time spent in the closed arms (p<0.01), showing increased anxiety-like behavior. WES revealed mutations in pathway aberration in neuron projection, actin filament-based processes, and neuronal migration in KO. Decreased cell viability (p<0.001) and expression of soluble NSF adapter protein 25 (SNAP25) (p<0.001) and postsynaptic density protein 95 (PSD95) (p<0.01) was observed in days in vitro 7 neurons. Downregulation of synaptic proteins, and altered phosphorylation levels of Synapsin I, mammalian uncoordinated 18 (MUNC18), extracellular signal-regulated kinase (ERK), and cAMP response element-binding protein (CREB) was observed in KO cortex and hippocampus. Risperidone reversed the memory impairment in the passive avoidance test and the spontaneous alternation percentage in the Y maze test. Risperidone also restored the reduced expression of PSD95 (p<0.01) and the phosphorylation of Synapsin at Ser605 (p<0.05) and Ser549 (p<0.001) in the cortex of moesin-KO.
Conclusion
Moesin deficiency leads to neurodevelopmental delay and memory decline, which may be caused through altered regulation in synaptic proteins and function.
7.Mortality from cerebrovascular diseases in China: Exploration of recent and future trends
Bin LV ; Ge SONG ; Feng JING ; Mingyu LI ; Hua ZHOU ; Wanjun LI ; Jiacai LIN ; Shengyuan YU ; Jun WANG ; Xiangyu CAO ; Chenglin TIAN
Chinese Medical Journal 2024;137(5):588-595
Background::Cerebrovascular disease (CVD) ranks among the foremost factors responsible for mortality on a global scale. The mortality patterns of CVDs and temporal trends in China need to be well-illustrated and updated.Methods::We collected mortality data on patients with CVD from Chinese Center for Disease Control and Prevention’s Disease Surveillance Points (CDC-DSP) system. The mortality of CVD in 2020 was described by age, sex, residence, and region. The temporal trend from 2013 to 2019 was evaluated using joinpoint regression, and estimated rates of decline were extrapolated until 2030 using time series models.Results::In 2019, the age-standardized mortality in China (ASMRC) per 100,000 individuals was 113.2. The ASMRC for males (137.7/10 5) and rural areas (123.0/10 5) were both higher when stratified by gender and urban/rural residence. The central region had the highest mortality (126.5/10 5), the western region had a slightly lower mortality (123.5/10 5), and the eastern region had the lowest mortality (97.3/10 5). The age-specific mortality showed an accelerated upward trend from aged 55-59 years, with maximum mortality observed in individuals over 85 years of age. The age-standardized mortality of CVD decreased by 2.43% (95% confidence interval, 1.02-3.81%) annually from 2013 to 2019. Notably, the age-specific mortality of CVD increased from 2013 to 2019 for the age group of over 85 years. In 2020, both the absolute number of CVD cases and the crude mortality of CVD have increased compared to their values in 2019. The estimated total deaths due to CVD were estimated to reach 2.3 million in 2025 and 2.4 million in 2030. Conclusion::The heightened focus on the burden of CVD among males, rural areas, the central and western of China, and individuals aged 75 years and above has emerged as a pivotal determinant in further decreasing mortalities, consequently presenting novel challenges to strategies for disease prevention and control.
8.Mortality, morbidity, and care practices for 1750 very low birth weight infants, 2016-2021
Yang HE ; Meng ZHANG ; Jun TANG ; Wanxiu LIU ; Yong HU ; Jing SHI ; Hua WANG ; Tao XIONG ; Li ZHANG ; Junjie YING ; Dezhi MU
Chinese Medical Journal 2024;137(20):2452-2460
Background::Very low birth weight (VLBW) infants are the key populations in neonatology, wherein morbidity and mortality remain major challenges. The study aimed to analyze the clinical characteristics of VLBW infants.Methods::A retrospective cohort study was conducted in West China Second Hospital between January 2016 and December 2021. Neonates with a birth weight of <1500 g were included. Mortality, care practices, and major morbidities were analyzed, and compared with those of previous 7 years (2009-2015).Results::Of the total 1750 VLBW, 1386 were infants born with birth weight between 1000-1499 g and 364 infants were born with weight below 1000 g; 42.9% (751/1750) required delivery room resuscitation; 53.9% (943/1750) received non-invasive ventilation only; 38.2% (669/1750) received invasive ventilation; 1517 VLBW infants received complete treatment. Among them, 60.1% (912/1517) of neonates had neonatal respiratory distress syndrome (NRDS), 28.7% (436/1517) had bronchopulmonary dysplasia (BPD), 22.0% (334/1517) had apnea, 11.1% (169/1517) had culture-confirmed sepsis, 8.4% (128/1517) had pulmonary hemorrhage, 7.6% (116/1517) had severe intraventricular hemorrhage (IVH)/periventricular leukomalacia (PVL), 5.7% (87/1517) had necrotizing enterocolitis (NEC), and 2.0% (31/1517) had severe retinopathy of prematurity. The total and in-hospital mortality rates were 9.7% (169/1750) and 3.0% (45/1517), respectively. The top three diagnoses of death among those who had received complete treatment were sepsis, NRDS, and NEC. In 2009-2015, 1146 VLBW were enrolled and 895 infants received complete treatment. The proportions of apnea, IVH, and IVH stage ≥3/PVL, were higher in 2009-2015 compared with those in 2016-2021, while the proportions of NRDS and BPD were characterized by significant increases in 2016-2021. The total and in-hospital mortality rates were 16.7% (191/1146) and 5.6% (50/895) respectively in 2009-2015.Conclusion::Among VLBW infants born in 2016-2021, the total and in-hospital mortality rates were lower than those of neonates born in 2009-2015. Incidences of NRDS and BPD increased in 2016-2021, which affected the survival rates and long-term prognosis of VLBW.
9.Research progress of mitochondrial quality control in methamphetamine-induced neurotoxicity
Qian-Yun NIE ; Wen-Juan DONG ; Gen-Meng YANG ; Li-Xiang QIN ; Chun-Hui SONG ; Li-Hua LI ; Shi-Jun HONG
Chinese Pharmacological Bulletin 2024;40(7):1201-1205
Methamphetamine abuse is a major public health problem in the world,and in recent years,methamphetamine is also the most abused synthetic drug in China.The neurotoxic or addiction mechanism of methamphetamine has not been fully clarified,and there is still a lack of specific withdrawal methods and drugs for methamphetamine abuse.Mitochondria are not on-ly the organelles to which methamphetamine directly produces toxic effects,but also participate in regulating the neurotoxic damage process of methamphetamine.Mitochondrial quality is the regulatory basis for maintaining mitochondrial homeostasis and is regulated by three main mechanisms,which are mitochon-drial biogenesis,mitochondrial dynamic,and mitophagy.This review summarizes the research progress of mitochondrial quality control in methamphetamine-induced neurotoxicity,which may provide theoretical support for further research on the mechanism of methamphetamine neurotoxicity and development the mito-chondria-targeting drugs.
10.LncRNA-CCRR regulates arrhythmia induced by myocardial infarction by affecting sodium channel ubiquitination via UBA6
Fei-Han SUN ; Dan-Ning LI ; Hua YANG ; Sheng-Jie WANG ; Hui-Shan LUO ; Jian-Jun GUO ; Li-Na XUAN ; Li-Hua SUN
Chinese Pharmacological Bulletin 2024;40(8):1437-1446
Aim To investigate the regulatory mecha-nism of arrhythmia of sodium channel ubiquitination af-ter MI and to study the electrophysiological remodeling mechanism of lncRNA-CCRR after MI for the preven-tion and treatment of arrhythmia after MI.Methods LncRNA-CCRR transgenic mice and C57BL/6 mice injected with lncRNA-CCRR overexpressed adeno-asso-ciated virus were used.Four weeks after infection,the left anterior descending branch of the coronary artery was ligated for 12 h to establish a mouse acute myocar-dial infarction model,and the incidence of arrhythmia was detected by programmed electrical stimulation.Ln-cRNA-CCRR overexpression/knockdown adeno-associ-ated virus and negative control were transfected into neonatal mouse cardiomyocytes(NMCMs),and the model was prepared by hypoxia for 12 h.LncRNA-CCRR expression was detected by FISH,Nav1.5 and UBA6 protein and Nav.1.5 mRNA expression were de-tected by Western blot and real-time quantitative poly-merase chain reaction(qRT-PCR),Nav1.5 and UBA6 expressions were detected by immunofluores-cence,and the relationship between lncRNA-CCRR and UBA6 was detected by RIP.INa current density af-ter CCRR overexpression and knockdown was detected by Whole-cell clamp patch.Results In MI mice,the expression of lncRNA-CCRR decreased,the incidence of arrhythmia increased,the expression of CCRR and Nav1.5 mRNA was down-regulated,the protein ex-pression of Nav1.5 was down-regulated,and the pro-tein expression of UBA6 was up-regulated compared with sham group.Overexpression of CCRR could re-verse the above changes.AAV-CCRR could reverse the down-regulated CCRR and Nav1.5 mRNA levels af-ter hypoxia,and improve the expression of Nav1.5 and UBA6 protein.The direct relationship between ln-cRNA-CCRR and UBA6 was identified by RIP analy-sis.The INa density increased after transfection with AAV-CCRR.The INa density decreased after transfec-tion with AAV-si-CCRR.Conclusions The expres-sion of lncRNA-CCRR decreases after MI,and ln-cRNA-CCRR can improve arrhythmia induced by MI by inhibiting UBA6 to increase the protein expression level of Nav1.5 and the density of INa.

Result Analysis
Print
Save
E-mail