1.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
2.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
3.Comprehensive evaluation of benign and malignant pulmonary nodules using combined biological testing and imaging assessment in 1 017 patients: A retrospective cohort study
Lei ZHANG ; Zihao LI ; Nan LI ; Jun CHENG ; Feng ZHANG ; Pinghui XIA ; Wang LÜ ; ; Jian HU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):60-66
Objective By combining biological detection and imaging evaluation, a clinical prediction model is constructed based on a large cohort to improve the accuracy of distinguishing between benign and malignant pulmonary nodules. Methods A retrospective analysis was conducted on the clinical data of the 32 627 patients with pulmonary nodules who underwent chest CT and testing for 7 types of lung cancer-related serum autoantibodies (7-AABs) at our hospital from January 2020 to April 2024. The univariate and multivariate logistic regression models were performed to screen independent risk factors for benign and malignant pulmonary nodules, based on which a nomogram model was established. The performance of the model was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Results A total of 1 017 patients with pulmonary nodules were included in the study. The training set consisted of 712 patients, including 291 males and 421 females, with a mean age of (58±12) years. The validation set included 305 patients, comprising 129 males and 176 females, with a mean age of (58±13) years. Univariate ROC curve analysis indicated that the combination of CT and 7-AABs testing achieved the highest area under the curve (AUC) value (0.794), surpassing the diagnostic efficacy of CT alone (AUC=0.667) or 7-AABs alone (AUC=0.514). Multivariate logistic regression analysis showed that radiological nodule diameter, nodule nature, and CT combined with 7-AABs detection were independent predictors, which were used to construct a nomogram prediction model. The AUC values for this model were 0.826 and 0.862 in the training and validation sets, respectively, demonstrating excellent performance in DCA. Conclusion The combination of 7-AABs with CT significantly enhances the accuracy of distinguishing between benign and malignant pulmonary nodules. The developed predictive model provides strong support for clinical decision-making and contributes to achieving precise diagnosis and treatment of pulmonary nodules.
4.Analysis of clarithromycin potential adverse drug interactions and establishment of refined prescription pre-review rules
Long WANG ; Li ZHANG ; Lingna ZHU ; Guanjun ZHANG ; Jun CHENG
China Pharmacy 2025;36(8):986-990
OBJECTIVE To analyze the potential adverse drug interactions (pADIs) of clarithromycin, and establish refined prescription pre-review rules. METHODS Outpatient prescriptions of clarithromycin in combination with other drugs were collected from January 1, 2024 to June 30, 2024 through hospital information system of the Third People’s Hospital of Bengbu. pADIs were identified and their risk severities were graded according to Lexicomp and Micromedex databases. Then, refined prescription pre- review rules for clarithromycin pADIs-related drugs were established according to the identification and risk level results. RESULTS Among 3 046 clarithromycin combined drug prescriptions, 946 cases of pADIs occurred in 812 prescriptions. There were 6, 415 and 525 cases classified as “contraindicated”,“ major” and “moderate”, respectively. The combination drugs with “contraindicated” levels were tamsulosin, rupatadine, domperidone and ticagrelor, while those with “major” levels were mainly theophylline, dexamethasone and amlodipine. Accordingly, 26 refined rules were established, including 4 items of “warning information→prescription interception”, 11 items of “warning information→prescription double signature” and 11 items of “attention information→prescription approval”. CONCLUSIONS There are “contraindicated” and “major” risks associated with clarithromycin and its combination drugs in the hospital, and refined prescription pre-review rules for clarithromycin combined drug prescription have been established successfully.
5.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
6.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
7.Effects of Cldn14 gene knockout on the formation of calcium oxalate stones in rats and its mechanism
Peiyue LUO ; Liying ZHENG ; Tao CHEN ; Jun ZOU ; Wei LI ; Qi CHEN ; Le CHENG ; Lifeng GAN ; Fangtao ZHANG ; Biao QIAN
Journal of Modern Urology 2025;30(2):168-173
Objective: To explore the effects of Cldn14 gene knockout on renal metabolism and stone formation in rats,so as to provide reference for research in the field of urinary calium metabolism and stone formation. Methods: Cldn14 gene knockout homozygous rats and wild-type rats of the same age were randomly divided into 4 groups:wild-type control (WC) group,wild-type ethylene glycol (WE) group,gene knockout control (KC) group and gene knockout ethylene glycol (KE) group,with 10 rats in each group.The WE and KE groups were induced with ethylene glycol + ammonium chloride to form kidney stones,while the WC and KC groups received normal saline gavage.After 4 weeks of standard maintenance feeding,the urine samples were collected to detect the venous blood.The kidneys were collected for HE,Pizzolatto's staining and transmission electron microscopy.The protein in renal tissues was extracted to detect the expressions of Claudin16 and Claudin19. Results: Crystal deposition was observed in the renal tubular lumen of the WE and the KE groups,and more crystals were detected in the KE group.The WE group had a large number of intracytoplasmic black crystalline inclusions observed in renal tubular epithelial cells under transmission electron microscope,followed by the KE and KC groups.Compared with WC and WE groups,KC and KE groups had significantly decreased serum calcium and magnesium levels but significantly increased urinary calcium level.In addition,the urinary calcium level was higher in the WE group than in the WC group and higher in the KE group than in the KC group.The KE group had lower level of Claudin16,but there was no significant difference in the level of Claudin19 among the 4 groups(P>0.05). Conclusion: Knockout of Cldn14 gene alone cannot effectively reduce urinary calcium excretion or reduce the risk of stone formation in rats,which may be related to the decrease of Claudin16 level.
8.Efficacy and safety of ruxolitinib in the treatment of myelofibrosis
Wanwan WANG ; Jun YE ; Hai CHENG ; Wei YAO ; Guiling LIU
China Pharmacy 2025;36(14):1781-1785
OBJECTIVE To explore the efficacy and safety of ruxolitinib in the treatment of myelofibrosis (MF). METHODS A retrospective collection of data was conducted on 42 MF patients who were treated with ruxolitinib in a standardized manner for more than 6 months in the Third People’s Hospital of Bengbu from September 2018 to April 2024. The clinical symptom scores, spleen size reduction, and MF grading of the patients before and after treatment were analyzed. Additionally, the occurrence of adverse reactions with a causality assessment result of “definite”“probable” or “possible” was recorded. The patients’ survival status was followed up. RESULTS After 6 months of treatment, both clinical symptom scores and the total score were significantly decreased than before treatment (P<0.05). The length and thickness of the spleen were significantly shorter than before treatment (P<0.05). MF classification in 5 patients decreased by 1 level compared with baseline, 1 case was level 2 and dropped to level 0, 14 patients remained stable. The main adverse reactions were anemia (26 cases), thrombocytopenia (14 cases), infection (11 cases), and gastrointestinal discomfort (9 cases). Thirty-nine patients survived, with a survival rate of 92.86%. CONCLUSIONS Ruxolitinib can effectively improve the clinical symptoms of patients with MF, shrink the spleen, stabilize and even improve MF grading, and holds promise for bringing long-term survival benefits to MF patients. Adverse reactions are mainly anemia, thrombocytopenia, infection and gastrointestinal discomfort.
9.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
10.Current status and reflections on research of intelligent acupuncture-moxibustion medical equipment.
Ling CHENG ; Muqiu TIAN ; Yanling PING ; Shuqing LIU ; Yunfeng WANG ; Jun ZHANG ; Qiaofeng WU
Chinese Acupuncture & Moxibustion 2025;45(10):1396-1404
Intelligent acupuncture-moxibustion medical equipment is an important force in promoting the inheritance, innovation, and modernization of acupuncture-moxibustion. This paper reviews the development status of intelligent acupuncture-moxibustion medical equipment and related new technologies, as well as the challenges faced. It is found that, with the advancement of technologies such as big data and artificial intelligence, acupuncture-moxibustion medical equipment has shown characteristics of greater precision, miniaturization, intelligence, and portability. However, deficiencies remain in areas such as standardization and regulation, including relatively low rates of effective transformation and a lack of innovation in research outcomes. Therefore, there is an urgent need to formulate corresponding strategies: improving the development of relevant standards for intelligent acupuncture-moxibustion medical equipment, encouraging the integration of medicine and engineering, cultivating interdisciplinary talents, and strengthening the protection of invention patents. It is necessary to establish a demand-oriented pathway connecting "equipment development, equipment evaluation, product formation" through multiple stages such as talent training and research project initiation, thereby promoting the modernization and standardization of intelligent acupuncture-moxibustion medical equipment and supporting the revitalization of traditional medicine.
Moxibustion/instrumentation*
;
Humans
;
Acupuncture Therapy/trends*
;
Artificial Intelligence

Result Analysis
Print
Save
E-mail