1.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
2.Comparison of Histopathological and Molecular Pathological Phenotypes in Mouse Models of Intrauterine Adhesions Induced by Two Concentrations of Ethanol Perfusion
Juan JIANG ; Ning SONG ; Wenbo LIAN ; Congcong SHAO ; Wenwen GU ; Yan SHI
Laboratory Animal and Comparative Medicine 2025;45(4):393-402
Objective To construct intrauterine adhesion (IUA) mouse models induced by two different concentrations of ethanol injury, compare the phenotypes, and optimize a more stable IUA modeling method. Methods Twenty 8-week-old female C57BL/6N mice were randomly divided into two groups: the 95% ethanol injury group and the 50% ethanol injury group. Using a self-control method, the left uterine horn was infused with ethanol to establish the IUA model, while the right uterine horn was infused with saline as the sham operation. Five mice from each group were euthanized on day 7 and 15 after modeling, and uterine tissues were collected. Hematoxylin-eosin (HE) staining was used to observe the endometrial pathology, and Masson staining was used to assess the degree of endometrial fibrosis. Quantitative real-time PCR was employed to detect the expression levels of fibrosis markers and pro-inflammatory factors in the uterine tissues. Results Compared to the sham operation, these two ethanol injury led to a significant reduction in elasticity of the uterus, an increase in inflammatory infiltration, and a marked increase in the degree of fibrosis on day 7 after modeling (P<0.05). The 95% ethanol injury group showed a significant decrease in endometrial thickness (P<0.05), whereas no significant change was observed in the 50% ethanol injury group when compared to the sham operation (P>0.05). The expression levels of fibrotic marker molecules collagen type Ⅳ alpha 1 chain (Col4A1), α-smooth muscle actin (α-SMA), transforming growth factor-β (TGF-β), and pro-inflammatory factors tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were significantly elevated in the 50% ethanol injury group when compared to the sham operation (P<0.05), although there was an increasing trend of the same markers in the 95% ethanol injury group, the differences were not statistically significant (P>0.05). On day 15 after modeling, the histopathological changes in both ethanol injury groups were not significant when compared to the sham operation, the expression levels of Col4A1, TGF-β, TNF-α and IL-1β remained significantly higher in the 50% ethanol injury group (P<0.05), while only IL-1β was significantly elevated in the 95% ethanol injury group (P<0.05). Conclusion Uterine infusion with 95% ethanol results in more marked histopathological changes in the IUA mouse model compared to the 50% ethanol injury group. The 95% ethanol injury model is suitable for histopathological studies. However, the 50% ethanol injury group shows higher expression levels of fibrosis markers and pro-inflammatory factors compared to the 95% ethanol injury group, suggesting that the 50% ethanol injury model is more suitable for molecular pathological study.
3.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
4.Clinical Applications of Circulating Tumor DNA in Response Evaluation and Relapse Monitoring of Primary Mediastinal Large B-Cell Lymphoma.
Lu PAN ; Xin-Miao JIANG ; Yan TENG ; Ning WANG ; Ling HUANG ; Han-Guo GUO ; Si-Chu LIU ; Xiao-Juan WEI ; Fei-Li CHEN ; Zhan-Li LIANG ; Wen-Yu LI
Journal of Experimental Hematology 2025;33(2):407-415
OBJECTIVE:
To explore the clinical significance of circulating tumor DNA (ctDNA) in response evaluation and relapse monitoring for patients with primary mediastinal large B-cell lymphoma (PMBCL).
METHODS:
The clinical characteristics, efficacy and survival of 38 PMBCL patients in our hospital from January 2010 to April 2020 were retrospectively analyzed. The ctDNA monitoring was conducted by targeted next-generation sequencing (NGS).
RESULTS:
Among the 38 patients, 26 cases were female, and 32 cases were diagnosed with Ann Arbor stage I-II. The 5-year overall survival (OS) rate and progression-free survival (PFS) rate were 74.7% and 61.7%, respectively. Males and those with high aaIPI scores (3 points) had a relatively poor prognosis. The NGS results of 23 patients showed that STAT6 (65.2%), SOCS1 (56.5%), and TNFAIP3 (56.5%) were the most common mutated genes. Patients with stable disease (SD)/progressive disease (PD) exhibited enrichment in cell cycle, FoxO, and TNF signaling pathways. A total of 29 patients underwent end-of-treatment PET/CT (EOT PET/CT), and 16 of them received ctDNA monitoring with 12 negative. Among 6 patients with EOT PET/CT positive (Deauville 4), 4 underwent ctDNA monitoring, and 3 of them were negative, being still in continuous remission without any subsequent anti-tumor therapy.
CONCLUSION
CtDNA may be combined with PET/CT to assess efficacy, monitor relapse, and guide treatment of PMBCL.
Humans
;
Circulating Tumor DNA/blood*
;
Female
;
Mediastinal Neoplasms
;
Male
;
Retrospective Studies
;
High-Throughput Nucleotide Sequencing
;
Prognosis
;
Lymphoma, Large B-Cell, Diffuse/genetics*
;
Middle Aged
;
Adult
;
Aged
;
Neoplasm Recurrence, Local
;
Mutation
5.Histological Transformation from Non-small Cell Lung Cancer to Small Cell Lung Cancer Induced by Immune Checkpoint Inhibitor Therapy: A Case Report and Literature Review.
Xiting CHEN ; Wenyuan HE ; Ning YANG ; Lijuan XIONG ; Haoqiang WANG ; Peng LIU ; Bo XIE ; Juan ZHOU
Chinese Journal of Lung Cancer 2025;28(7):558-566
Non-small cell lung cancer (NSCLC), as the predominant histological subtype of lung cancer, accounts for approximately 85% of all lung cancer cases. In recent years, immune checkpoint inhibitors (ICIs), represented by programmed death 1/programmed death ligand 1 (PD-1/PD-L1) inhibitors, have achieved breakthrough advancements in patients with driver gene-negative NSCLC. They have been established as a key component of first-line treatment regimens and have significantly improved clinical outcomes. However, limited clinical evidence has emerged showing the phenomenon of histological transformation from NSCLC to small cell lung cancer (SCLC) in patients experiencing disease progression after ICIs monotherapy or combination therapy. Systematic research data on the clinical characteristics, molecular biological basis, and subsequent treatment strategies for such transformation events are currently lacking. This article reports a case of SCLC transformation occurring in a patient with KRAS-mutated lung adenocarcinoma after 16 months of ICIs combination therapy and provides a systematic review of 22 similar published cases. The study demonstrates that small cell transformation is a critical mechanism of immunotherapy resistance, and transformed patients exhibit poor prognosis. The research emphasizes the importance of dynamic monitoring of neuron-specific enolase (NSE) and standardized repeat biopsies during treatment, providing a basis for clinical practice. This aids in enhancing the recognition and management capabilities for this rare histological transformation, ultimately improving patient outcomes.
Humans
;
Immune Checkpoint Inhibitors/therapeutic use*
;
Lung Neoplasms/immunology*
;
Carcinoma, Non-Small-Cell Lung/immunology*
;
Small Cell Lung Carcinoma/genetics*
;
Male
;
Middle Aged
;
Female
6.High-dose estrogen impairs demethylation of H3K27me3 by decreasing Kdm6b expression during ovarian hyperstimulation in mice.
Quanmin KANG ; Fang LE ; Xiayuan XU ; Lifang CHEN ; Shi ZHENG ; Lijun LOU ; Nan JIANG ; Ruimin ZHAO ; Yuanyuan ZHOU ; Juan SHEN ; Minhao HU ; Ning WANG ; Qiongxiao HUANG ; Fan JIN
Journal of Zhejiang University. Science. B 2025;26(3):269-285
Given that ovarian stimulation is vital for assisted reproductive technology (ART) and results in elevated serum estrogen levels, exploring the impact of elevated estrogen exposure on oocytes and embryos is necessary. We investigated the effects of various ovarian stimulation treatments on oocyte and embryo morphology and gene expression using a mouse model and estrogen-treated mouse embryonic stem cells (mESCs). Female C57BL/6J mice were subjected to two types of conventional ovarian stimulation and ovarian hyperstimulation; mice treated with only normal saline served as controls. Hyperstimulation resulted in high serum estrogen levels, enlarged ovaries, an increased number of aberrant oocytes, and decreased embryo formation. The messenger RNA (mRNA)-sequencing of oocytes revealed the dysregulated expression of lysine-specific demethylase 6b (Kdm6b), which may be a key factor indicating hyperstimulation-induced aberrant oocytes and embryos. In vitro, Kdm6b expression was downregulated in mESCs treated with high-dose estrogen; treatment with an estrogen receptor antagonist could reverse this downregulated expression level. Furthermore, treatment with high-dose estrogen resulted in the upregulated expression of histone H3 lysine 27 trimethylation (H3K27me3) and phosphorylated H2A histone family member X (γ-H2AX). Notably, knockdown of Kdm6b and high estrogen levels hindered the formation of embryoid bodies, with a concomitant increase in the expression of H3K27me3 and γ-H2AX. Collectively, our findings revealed that hyperstimulation-induced high-dose estrogen could impair the demethylation of H3K27me3 by reducing Kdm6b expression. Accordingly, Kdm6b could be a promising marker for clinically predicting ART outcomes in patients with ovarian hyperstimulation syndrome.
Female
;
Mice
;
Demethylation/drug effects*
;
Embryonic Stem Cells
;
Estrogens/administration & dosage*
;
Gene Expression/drug effects*
;
Histones/metabolism*
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
;
Mice, Inbred C57BL
;
Oocytes
;
Ovary/drug effects*
;
Reproductive Techniques, Assisted
;
Animals
7.Trends in intestinal aging: From underlying mechanisms to therapeutic strategies.
Yajun WANG ; Xueni ZHANG ; Mengli QING ; Wen DANG ; Xuemei BAI ; Yingjie WANG ; Di ZHOU ; Lingjuan ZHU ; Degang QING ; Juan ZHANG ; Gang CHEN ; Ning LI
Acta Pharmaceutica Sinica B 2025;15(7):3372-3403
Intestinal aging is central to systemic aging, characterized by a progressive decline in intestinal structure and function. The core mechanisms involve dysregulation of epithelial cell renewal and gut microbiota dysbiosis. In addition to previous results in model organisms like Drosophila melanogaster, recent studies have shown that in mammalian models, aging causes increased intestinal permeability and intestinal-derived systemic inflammation, thereby affecting longevity. Therefore, anti-intestinal aging can be an important strategy for reducing frailty and promoting longevity. There are three key gaps remaining in the study of intestinal aging: (1) overemphasis on aging-related diseases rather than the primary aging mechanisms; (2) lack of specific drugs or treatments to prevent or treat intestinal aging; (3) limited aging-specific dysbiosis research. In this review, the basic structures and renewal mechanisms of intestinal epithelium, and mechanisms and potential therapies for intestinal aging are discussed to advance understanding of the causes, consequences, and treatments of age-related intestinal dysfunction.
8.Colorimetric Determination of Antioxidant Capacity by Peroxidase Mimics Based on Ruthenium Nanoparticles Supported on Carbon Nanosheets
Ru-Xue HE ; Peng XU ; Fang-Ning LIU ; Peng-Juan NI ; Yi-Zhong LU
Chinese Journal of Analytical Chemistry 2024;52(1):45-53,中插5-中插13
Lattice strain ruthenium nanoparticles uniformly and stably supported on nitrogen-modified carbon nanosheets(RuNPs/NC)were prepared via simple wet-chemical and subsequent pyrolysis method.The nitrogen doped NC could effectively improve their uniform dispersion and lattice compression of RuNPs.Through changing the pyrolysis temperature,the nitrogen content,types and degree of lattice strain of RuNPs could be effectively tuned,which could be used to adjust and control their peroxidase-like activity.The as-prepared RuNPs/NC-900 exhibited highest peroxidase-like activity,and could catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine(TMB)to produce a blue product with the maximum absorption at 652 nm in the presence of H2O2.The steady-state kinetic analysis indicated that the reaction catalyzed by RuNPs/NC followed the Michaelis-Menten kinetic model.Tannic acid(TA),gallic acid(GA)and ascorbic acid(AA)could effectively inhibit the RuNPs/NC-H2O2-triggered chromogenic reaction of TMB,resulting in color fading and decrease in absorbance.Based on this,a sensitive and accurate system was constructed for detection of TA,GA and AA.The detection limits(3σ/S)for TA,GA and AA were 0.014,0.014 and 0.29 μmol/L,respectively.This study not only developed a colorimetric sensing method based on RuNPs/NC nanozyme but also offered a new approach for the sensitive detection of antioxidants in food.
9.Effect of carbonic anhydrase 9 on hypoxia-induced proliferation of retinal microvascular endothelial cells in preterm fetus
Xianqiong LUO ; Wanwan FAN ; Ning WANG ; Juan CHEN ; Jian MA
Chinese Journal of Neonatology 2024;39(1):38-44
Objective:We applied a hypoxia-induced model of human fetal retinal microvascular endothelial cell (RMEC) to study the effect of carbonic anhydrase 9 (CA9) on cell proliferation.Methods:The eyeballs of spontaneously aborted fetuses in Guangdong Women and Children's Hospital were obtained, and the retinas were isolated. RMEC was obtained by trypsin and collagenase two-step enzyme digestion, and endothelial cells were identified by CD34. The fetal RMEC and the purchased adult RMEC were cultured in normoxic and hypoxic incubators (1%O 2+5%CO 2+94%N 2), and the expression of CA9 was detected by qPCR and Western blot. After knocking down the CA9 by small interference RNA technique, the cell proliferation was detected by CCK-8 method, and the cell viability was detected by CCK-8 after adding CA9 inhibitor U-104. Results:The primary RMEC was extracted successfully. Immunofluorescence staining showed the percentage of CD34 positive cells in the third-generation cells was nearly 100%. The expression of CA9 mRNA in immature fetus and adult RMEC under hypoxia culture was higher than that under normoxic culture (fetal 1% O 2 group vs. fetal 21% O 2 group: 67.80±10.31 vs. 1.00±0.04, P<0.001; adult 1% O 2 group vs. adult 21% O 2 group: 1.72±0.22 vs. 1.00±0.02, P=0.014). Western blot analysis showed significantly increased expression of CA9 in the fetal RMEC exposed to hypoxia, which aligned with the expression of CA9 mRNA. When fetal RMEC was transfected with siCA9 20 nM, the knockdown rate of CA9 was 95% ( P<0.001). CCK-8 assay showed significantly lower proliferation of fetal RMEC cells in siCA9 group compared to siNC group (0.57±0.05 vs. 0.90±0.03, P<0.001), which was reflected by the OD value. With the addition of 100 μM CA9 inhibitor U-104, the viability of fetal RMEC in the treated groupwas significantly lower than that in the untreated group (99.16%±3.82% vs. 119.10% ±1.72%, P=0.002). Conclusions:The expression of CA9 differed between adult and preterm fetus in our hypoxia-induced RMEC model. Inhibiting CA9 can inhibit the proliferation of retinal microvascular endothelial cells of preterm fetus.
10.Multimodal image fusion-assisted endoscopic evacuation of spontaneous intracerebral hemorrhage
Chao ZHANG ; Juan LI ; Ping-Li WANG ; Hua-Yun CHEN ; Yu-Hang ZHAO ; Ning WANG ; Zhi-Tao ZHANG ; Yan-Wei DANG ; Hong-Quan WANG ; Jun WANG ; Chu-Hua FU
Chinese Journal of Traumatology 2024;27(6):340-347
Purpose::Although traditional craniotomy (TC) surgery has failed to show benefits for the functional outcome of intracerebral hemorrhage (ICH). However, a minimally invasive hematoma removal plan to avoid white matter fiber damage may be a safer and more feasible surgical approach, which may improve the prognosis of ICH. We conducted a historical cohort study on the use of multimodal image fusion-assisted neuroendoscopic surgery (MINS) for the treatment of ICH, and compared its safety and effectiveness with traditional methods.Methods::This is a historical cohort study involving 241 patients with cerebral hemorrhage. Divided into MINS group and TC group based on surgical methods. Multimodal images (CT skull, CT angiography, and white matter fiber of MRI diffusion-tensor imaging) were fused into 3 dimensional images for preoperative planning and intraoperative guidance of endoscopic hematoma removal in the MINS group. Clinical features, operative efficiency, perioperative complications, and prognoses between 2 groups were compared. Normally distributed data were analyzed using t-test of 2 independent samples, Nonnormally distributed data were compared using the Kruskal-Wallis test. Meanwhile categorical data were analyzed via the Chi-square test or Fisher’s exact test. All statistical tests were two-sided, and p < 0.05 was considered statistically significant. Results::A total of 42 patients with ICH were enrolled, who underwent TC surgery or MINS. Patients who underwent MINS had shorter operative time ( p < 0.001), less blood loss ( p < 0.001), better hematoma evacuation ( p =0.003), and a shorter stay in the intensive care unit ( p =0.002) than patients who underwent TC. Based on clinical characteristics and analysis of perioperative complications, there is no significant difference between the 2 surgical methods. Modified Rankin scale scores at 180 days were better in the MINS than in the TC group ( p =0.014). Conclusions::Compared with TC for the treatment of ICH, MINS is safer and more efficient in cleaning ICH, which improved the prognosis of the patients. In the future, a larger sample size clinical trial will be needed to evaluate its efficacy.

Result Analysis
Print
Save
E-mail