1.Protective Effect and Mechanisms of Taohong Siwutang Against Retinal Vasculitis Based on JAK2/STAT3 Signaling Pathway
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):49-56
ObjectiveBased on the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway, this study explores the protective effect and mechanism of Taohong Siwutang against retinal vasculitis (RV) from the perspective of angiogenesis. MethodsSPF-grade C57BL/6J mice were used to establish a RV model induced by experimental autoimmune uveitis (EAU), and the protective effect of Taohong Siwutang on RV was investigated. Fifty mice were randomly assigned to a blank group, model group, and low-, medium-, and high-dose Taohong Siwutang groups (3.315、6.63、13.26 g·kg-1,10 mice in each group). After modeling, gavage administration was performed for 20 consecutive days. A small-animal retinal imaging system and fluorescein sodium angiography were used to observe pathological changes in the retinal tissue and vessels. Hematoxylin-eosin (HE) staining was used to assess retinal histopathological changes. Immunohistochemistry was performed to evaluate CD31-positive expression. Western blot was used to detect the protein expression levels of JAK2, phosphorylated (p)-JAK2, STAT3, p-STAT3, and vascular endothelial growth factor receptor 2 (VEGFR2) in retinal tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to determine the relative expression level of VEGFR2 mRNA in retinal vessels. ResultsCompared with the blank group, the model group showed relative optic disc swelling, multiple areas of inflammatory cell infiltration around retinal veins with partial vascular occlusion, vessel thickening and morphological alterations, uneven retinal thickness, wrinkling and bending of inner and outer layers, vascular dilation, and disordered cellular arrangement. Compared with the model group, the Taohong Siwutang groups showed markedly reduced CD31-positive expression and effectively improved perivascular inflammatory infiltration, vascular tortuous dilation, angiogenesis, vascular occlusion, and hemorrhage. Western blot results showed that compared with the model group, the expression of VEGFR2 and the phosphorylation levels of JAK2 and STAT3 were significantly decreased in the Taohong Siwutang groups (P0.01). Real-time PCR results indicated that VEGFR2 mRNA expression was significantly decreased in the Taohong Siwutang groups compared with the model group (P0.05). ConclusionTaohong Siwutang can effectively alleviate angiogenesis in RV and, through the JAK2/STAT3 signaling pathway, reduce angiogenesis and improve retinal pathological injury, thereby exerting a protective effect on retinal vessels.
2.Protective Effect and Mechanisms of Taohong Siwutang Against Retinal Vasculitis Based on JAK2/STAT3 Signaling Pathway
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):49-56
ObjectiveBased on the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway, this study explores the protective effect and mechanism of Taohong Siwutang against retinal vasculitis (RV) from the perspective of angiogenesis. MethodsSPF-grade C57BL/6J mice were used to establish a RV model induced by experimental autoimmune uveitis (EAU), and the protective effect of Taohong Siwutang on RV was investigated. Fifty mice were randomly assigned to a blank group, model group, and low-, medium-, and high-dose Taohong Siwutang groups (3.315、6.63、13.26 g·kg-1,10 mice in each group). After modeling, gavage administration was performed for 20 consecutive days. A small-animal retinal imaging system and fluorescein sodium angiography were used to observe pathological changes in the retinal tissue and vessels. Hematoxylin-eosin (HE) staining was used to assess retinal histopathological changes. Immunohistochemistry was performed to evaluate CD31-positive expression. Western blot was used to detect the protein expression levels of JAK2, phosphorylated (p)-JAK2, STAT3, p-STAT3, and vascular endothelial growth factor receptor 2 (VEGFR2) in retinal tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to determine the relative expression level of VEGFR2 mRNA in retinal vessels. ResultsCompared with the blank group, the model group showed relative optic disc swelling, multiple areas of inflammatory cell infiltration around retinal veins with partial vascular occlusion, vessel thickening and morphological alterations, uneven retinal thickness, wrinkling and bending of inner and outer layers, vascular dilation, and disordered cellular arrangement. Compared with the model group, the Taohong Siwutang groups showed markedly reduced CD31-positive expression and effectively improved perivascular inflammatory infiltration, vascular tortuous dilation, angiogenesis, vascular occlusion, and hemorrhage. Western blot results showed that compared with the model group, the expression of VEGFR2 and the phosphorylation levels of JAK2 and STAT3 were significantly decreased in the Taohong Siwutang groups (P0.01). Real-time PCR results indicated that VEGFR2 mRNA expression was significantly decreased in the Taohong Siwutang groups compared with the model group (P0.05). ConclusionTaohong Siwutang can effectively alleviate angiogenesis in RV and, through the JAK2/STAT3 signaling pathway, reduce angiogenesis and improve retinal pathological injury, thereby exerting a protective effect on retinal vessels.
3.Effects of borneol on pharmacodynamics and pharmacokinetics of Corydalis saxicola total alkaloids in depression model rats
Yu YE ; Guoliang DAI ; Huaxi HANG ; Meishuang YU ; Yiran WANG ; Xuewen SHAO ; Wenzheng JU
China Pharmacy 2025;36(1):30-36
OBJECTIVE To investigate the effects of borneol on pharmacodynamic and pharmacokinetic effects of Corydalis saxicola total alkaloids in depression model rats. METHODS Thirty male SD rats were divided into blank control group, negative control group, positive control group (fluoxetine 10 mg/kg, i.g.), single drug group (C. saxicola total alkaloids 210 mg/kg, i.g.) and combined drug group (C. saxicola total alkaloids 210 mg/kg+borneol 50 mg/kg, i.g.) according to the random number table method, with 6 rats in each group. By lipopolysaccharide (LPS) induction modeling, except blank control group (no model and no administration) received intraperitoneal injection of the same amount of normal saline, the rats in the other groups were intraperitoneally injected with LPS once a day to establish a rat model of depression. After 1 week of modeling, each administration group was given relevant drug intragastrically according to the corresponding dose, and blank control group and negative control group (without drug treatment) were administered intragastrically with an equal volume of solvent to dissolve the drug; continued modeling while administering the drug. After two weeks of continuous administration, the effects of C. saxicola total alkaloids versus the combination of C. saxicola total alkaloids and borneol on the behavior of depressed rats were tested by behavioral experiments; the levels of tumor necrosis factor-α, interleukin-1β and interleukin-6 in rats were determined; the histopathological changes of the hippocampus of rats were observed. Blood sample was collected from the orbit at different time points after administration on the 15th day, and the upper plasma was obtained. Ultra-performance liquid chromatography-triple quadrupole tandem mass spectrometry was established for the simultaneous determination of dehydrocarvedine, tetrahydropalmatine, coptisine, palmatine, jatrorrhizine, berberine, berberrubine and epiberberine in rat plasma. The average plasma concentration-time curve was depicted, the area under the curve (AUC) was calculated, and the pharmacokinetic parameters were analyzed by DAS 3.2.2 software. RESULTS Compared with blank control group, the negative control group had a decrease in body mass and sugar water preference rate, a decrease in the total distance of open field, a prolonged swimming immobility time, and a increased in the expression of inflammatory factors in serum (P<0.05); compared with negative control group, the single drug group and the combined drug group increased the preference rate of sugar water, increased the total distance of open field, shortened the time of swimming immobility, and decreased the expression of inflammatory factors in serum (P<0.05). There was no significant difference in the above indicators between the single drug group and the combined drug group in rats (P>0.05). Pharmacokinetic results showed that compared with single drug group, AUC0-t of coptisine, AUC0-t, AUC0-∞, tmax and cmax of jatrorrhizine, AUC0-t, AUC0-∞, t1/2 and cmax of berberrubine, and AUC0-t of epiberberine, cmax of dehydrocarvedine, cmax of palmatine were significantly increased in combined drug group, but there was no significant difference, indicating that borneol didn’t have a significant effect on the efficacy of Corydalis saxicola nigra at this dose. CONCLUSIONS Both C. saxicola total alkaloids alone and in combination with borneol can improve depression-like behavior in depression model rats, reduce serum inflammatory cytokine levels, and protect hippocampal neurons. Compared with the use of Corydalis saxicola base alone, the combination with borneol do not show significant pharmacodynamic differences, bu can improve the absorption of coptisine, jatrorrhizine in model rats.
4.Progress in the study of anti-inflammatory active components with anti-inflammatory effects and mechanisms in Caragana Fabr.
Yu-mei MA ; Ju-yuan LUO ; Tao CHEN ; Hong-mei LI ; Cheng SHEN ; Shuo WANG ; Zhi-bo SONG ; Yu-lin LI
Acta Pharmaceutica Sinica 2025;60(1):58-71
The plants of the genus
5.Mechanism of Action of Kaixinsan in Ameliorating Alzheimer's Disease
Xiaoming HE ; Xiaotong WANG ; Dongyu MIN ; Xinxin WANG ; Meijia CHENG ; Yongming LIU ; Yetao JU ; Yali YANG ; Changbin YUAN ; Changyang YU ; Li ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):20-29
ObjectiveTo investigate the mechanism of action of Kaixinsan in the treatment of Alzheimer's disease (AD) based on network pharmacology, molecular docking, and animal experimental validation. MethodsThe Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and the Encyclopedia of Traditional Chinese Medicine(ETCM) databases were used to obtain the active ingredients and targets of Kaixinsan. GeneCards, Online Mendelian Inheritance in Man(OMIM), TTD, PharmGKB, and DrugBank databases were used to obtain the relevant targets of AD. The intersection (common targets) of the active ingredient targets of Kaixinsan and the relevant targets of AD was taken, and the network interaction analysis of the common targets was carried out in the STRING database to construct a protein-protein interaction(PPI) network. The CytoNCA plugin within Cytoscape was used to screen out the core targets, and the Metascape platform was used to perform gene ontology(GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis. The “drug-active ingredient-target” interaction network was constructed with the help of Cytoscape 3.8.2, and AutoDock Vina was used for molecular docking. Scopolamine (SCOP) was utilized for modeling and injected intraperitoneally once daily. Thirty-two male C57/BL6 mice were randomly divided into blank control (CON) group (0.9% NaCl, n=8), model (SCOP) group (3 mg·kg-1·d-1, n=8), positive control group (3 mg·kg-1·d-1 of SCOP+3 mg·kg-1·d-1 of Donepezil, n=8), and Kaixinsan group (3 mg·kg-1·d-1 of SCOP+6.5 g·kg-1·d-1 of Kaixinsan, n=8). Mice in each group were administered with 0.9% NaCl, Kaixinsan, or Donepezil by gavage twice a day for 14 days. Morris water maze experiment was used to observe the learning memory ability of mice. Hematoxylin-eosin (HE) staining method was used to observe the pathological changes in the CA1 area of the mouse hippocampus. Enzyme linked immunosorbent assay(ELISA) was used to determine the serum acetylcholine (ACh) and acetylcholinesterase (AChE) contents of mice. Western blot method was used to detect the protein expression levels of signal transducer and activator of transcription 3(STAT3) and nuclear transcription factor(NF)-κB p65 in the hippocampus of mice. ResultsA total of 73 active ingredients of Kaixinsan were obtained, and 578 potential targets (common targets) of Kaixinsan for the treatment of AD were screened out. Key active ingredients included kaempferol, gijugliflozin, etc.. Potential core targets were STAT3, NF-κB p65, et al. GO functional enrichment analysis obtained 3 124 biological functions, 254 cellular building blocks, and 461 molecular functions. KEGG pathway enrichment obtained 248 pathways, mainly involving cancer-related pathways, TRP pathway, cyclic adenosine monophosphate(cAMP) pathway, and NF-κB pathway. Molecular docking showed that the binding of the key active ingredients to the target targets was more stable. Morris water maze experiment indicated that Kaixinsan could improve the learning memory ability of SCOP-induced mice. HE staining and ELISA results showed that Kaixinsan had an ameliorating effect on central nerve injury in mice. Western blot test indicated that Kaixinsan had a down-regulating effect on the levels of NF-κB p65 phosphorylation and STAT3 phosphorylation in the hippocampal tissue of mice in the SCOP model. ConclusionKaixinsan can improve the cognitive impairment function in SCOP model mice and may reduce hippocampal neuronal damage and thus play a therapeutic role in the treatment of AD by regulating NF-κB p65, STAT3, and other targets involved in the NF-κB signaling pathway.
6.Metabolomics combined with network pharmacology reveals mechanism of Jiaotai Pills in treating depression.
Guo-Liang DAI ; Ze-Yu CHEN ; Yan-Jun WANG ; Xin-Fang BIAN ; Yu-Jie CHEN ; Bing-Ting SUN ; Xiao-Yong WANG ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2025;50(5):1340-1350
This study aims to explore the mechanism of Jiaotai Pills in treating depression based on metabolomics and network pharmacology. The chemical constituents of Jiaotai Pills were identified by UHPLC-Orbitrap Exploris 480, and the targets of Jiaotai Pills and depression were retrieved from online databases. STRING and Cytoscape 3.7.2 were used to construct the protein-protein interaction network of core targets of Jiaotai Pills in treating depression and the "compound-target-pathway" network. DAVID was used for Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses of the core targets. The mouse model of depression was established with chronic unpredictable mild stress(CUMS) and treated with different doses of Jiaotai Pills. The behavioral changes and pathological changes in the hippocampus were observed. UHPLC-Orbitrap Exploris 120 was used for metabolic profiling of the serum, from which the differential metabolites and related metabolic pathways were screened. A "metabolite-reaction-enzyme-gene" network was constructed for the integrated analysis of metabolomics and network pharmacology. A total of 34 chemical components of Jiaotai Pills were identified, and 143 core targets of Jiaotai Pills in treating depression were predicted, which were mainly involved in the arginine and proline, sphingolipid, and neurotrophin metabolism signaling pathways. The results of animal experiments showed that Jiaotai Pills alleviated the depression behaviors and pathological changes in the hippocampus of the mouse model of CUMS-induced depression. In addition, Jiaotai Pills reversed the levels of 32 metabolites involved in various pathways such as arginine and proline metabolism, sphingolipid metabolism, and porphyrin metabolism in the serum of model mice. The integrated analysis showed that arginine and proline metabolism, cysteine and methionine metabolism, and porphyrin metabolism might be the key pathways in the treatment of depression with Jiaotai Pills. In conclusion, metabolomics combined with network pharmacology clarifies the antidepressant mechanism of Jiaotai Pills, which may provide a basis for the clinical application of Jiaotai Pills in treating depression.
Animals
;
Drugs, Chinese Herbal/chemistry*
;
Depression/genetics*
;
Mice
;
Network Pharmacology
;
Metabolomics
;
Male
;
Disease Models, Animal
;
Humans
;
Protein Interaction Maps/drug effects*
;
Antidepressive Agents
7.Tetrahydropalmatine acts on α7nAChR to regulate inflammation and polarization of BV2 microglia.
Yan-Jun WANG ; Guo-Liang DAI ; Pei-Yao CHEN ; Hua-Xi HANG ; Xin-Fang BIAN ; Yu-Jie CHEN ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2025;50(11):3117-3126
Based on the α7 nicotinic acetylcholine receptor(α7nAChR), this study examined how tetrahydropalmatine(THP) affected BV2 microglia exposed to lipopolysaccharide(LPS), aiming to clarify the possible mechanism underlying the anti-depression effect of THP from the perspectives of preventing inflammation and regulating polarization. First, after molecular docking and determination of the content of Corydalis saxicola Bunting total alkaloids, THP was initially identified as a possible anti-depression component. The BV2 microglia model of inflammation was established with LPS. BV2 microglia were allocated into a normal group, a model group, low-and high-dose(20 and 40 μmol·L~(-1), respectively) THP groups, and a THP(20 μmol·L~(-1))+α7nAChR-specific antagonist MLA(1 μmol·L~(-1)) group. The CCK-8 assay was used to screen the safe concentration of THP. A light microscope was used to examine the morphology of the cells. Western blot and immunofluorescence were used to determine the expression of α7nAChR. qRT-PCR was performed to determine the mRNA levels of inducible nitric oxide synthase(iNOS), cluster of differentiation 86(CD86), suppressor of cytokine signaling 3(SOCS3), arginase-1(Arg-1), cluster of differentiation 206(CD206), tumor necrosis factor(TNF)-α, interleukin(IL)-6, and IL-1β. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. The experimental results showed that THP at concentrations of 40 μmol·L~(-1) and below had no effect on BV2 microglia. THP improved the morphology of BV2 microglia, significantly up-regulated the protein level of α7nAChR, significantly down-regulated the mRNA levels of iNOS, CD86, SOCS3, TNF-α, IL-6, and IL-1β, significantly up-regulated the mRNA levels of Arg-1 and CD206, and dramatically lowered the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. However, the antagonist MLA abolished the above-mentioned ameliorative effects of THP on LPS-treated BV2 microglia. As demonstrated by the aforementioned findings, THP protected LPS-treated BV2 microglia by regulating the M1/M2 polarization and preventing inflammation, which might be connected to the regulation of α7nAChR on BV2 microglia.
Berberine Alkaloids/chemistry*
;
alpha7 Nicotinic Acetylcholine Receptor/chemistry*
;
Microglia/metabolism*
;
Mice
;
Animals
;
Cell Line
;
Corydalis/chemistry*
;
Humans
;
Molecular Docking Simulation
;
Inflammation/drug therapy*
;
Nitric Oxide Synthase Type II/immunology*
;
Tumor Necrosis Factor-alpha/immunology*
8.Qualitative systematic evaluation of influencing factors for implementation of clinical practice guidelines in China based on theoretical domains framework.
Xu-Dong ZHANG ; Ju-Wen ZHANG ; Fan-Ya YU ; Jun-Hong YU ; Wei CHEN
China Journal of Chinese Materia Medica 2025;50(13):3803-3814
The effective implementation of clinical practice guideline(CPG), as a crucial vehicle of evidence-based medicine, plays a vital role in improving healthcare quality and patient safety. Currently, there remains a significant gap between the actual implementation outcomes of traditional Chinese medicine(TCM) guidelines and their intended objectives, which necessitates a systematic investigation into their influencing factors to optimize implementation strategies. This study aims to comprehensively identify the factors influencing CPG implementation in China, adapt the theoretical domains framework(TDF) to the local context, and integrate TCM-specific characteristics to provide recommendations for optimizing the development and implementation processes of TCM guidelines. Systematic search was conducted across multiple databases, including CNKI, Wanfang, VIP, SinoMed, PubMed, and EMbase, covering the period from each database's inception to March 2024. Qualitative and mixed-methods studies were included to examine factors affecting the implementation of clinical practice guidelines. The methodological quality of the included studies was assessed using the critical appraisal skills programme(CASP) tool. RESULTS:: were synthesized through framework analysis and thematic synthesis, and expert consensus was achieved via a structured consensus meeting. A total of 16 studies involving 2 388 participants were included with overall good methodological quality. Based on the TDF, 43 influencing factors across 14 domains were identified. The most critical factors included the quality of guideline evidence, training and academic conferences organized by hospitals and academic institutions to promote guideline adoption among medical staff, support from professional leaders for guideline implementation, the applicability and clarity of guideline recommendations, and material resources(supplies, funding, and facilities) required for implementation. Additionally, influencing factors of TCM guideline implementation were identified, including the distinctive advantages of TCM therapies, the applicability of syndrome differentiation, and the feasibility of TCM treatments. Based on these findings, it is recommended that TCM guideline development should incorporate these unique influencing factors to formulate high-quality, clear, and actionable recommendations. Following guideline publication, healthcare and academic institutions should strengthen training and dissemination efforts and ensure the availability of necessary implementation resources to facilitate the successful adoption of guidelines in clinical practice.
China
;
Humans
;
Practice Guidelines as Topic
;
Medicine, Chinese Traditional/standards*
;
Evidence-Based Medicine
9.Quetiapine competitively inhibits 5-HT3 receptor-mediatedcurrents in NCB20 neuroblastoma cells
Yong Soo PARK ; Gyu Min KIM ; Ho Jun SUNG ; Ju Yeong YU ; Ki-Wug SUNG
The Korean Journal of Physiology and Pharmacology 2025;29(3):373-384
The 5-hydroxytryptamine type3 (5-HT3 ) receptor, a ligand-gated ion channel, plays a critical role in synaptic transmission. It has been implicated in various neuropsychiatric disorders. This study aimed to elucidate the mechanism by which quetiapine, an atypical antipsychotic, could inhibit 5-HT3 receptor-mediated currents in NCB20 neuroblastoma cells. Whole-cell patch-clamp recordings were used to study effects of quetiapine on receptor ion channel kinetics and its competitive antagonism. Co-application of quetiapine shifted 5-HT concentration-response curve rightward, significantly increasing the EC50 without altering the maximal response (Emax ), suggesting a competitive inhibition. Quetiapine's IC50 varied with 5-HT concentration and treatment condition. The IC50 value of quetiapine was 0.58 μM with 3μM 5-HT and 25.23 μM with 10 μM 5-HT, indicating an inverse relationship between quetiapine efficacy and agonist concentration. Pretreatment of quetiapine significantly enhanced its inhibitory potency, reducing its IC50 from 25.23 μM to 0.20 μM.Interaction kinetics experiments revealed an IC50 of 5.17 μM for an open state of the 5-HT3 receptor, suggesting weaker affinity during receptor activation. Quetiapine also accelerated receptor deactivation and desensitization, suggesting that it could stabilize the receptor in non-conducting states. Additionally, quetiapine significantly prolonged recovery from desensitization without affecting recovery from deactivation, demonstrating its selective impact on receptor kinetics. Inhibition of the 5-HT3 receptor by quetiapine was voltage-independent, and quetiapine exhibited no usedependency, further supporting its role as a competitive antagonist. These findings provide insights into inhibitory mechanism of quetiapine on 5-HT3 receptor and suggest its potential therapeutic implications for modulating serotonergic pathways in neuropsychiatric disorders.
10.Haloperidol, a typical antipsychotic, inhibits 5-HT3 receptor-mediated currents in NCB-20 cells: a whole-cell patch-clamp study
Yong Soo PARK ; Gyu Min KIM ; Ho Jun SUNG ; Ju Yeong YU ; Ki-Wug SUNG
The Korean Journal of Physiology and Pharmacology 2025;29(3):349-358
Haloperidol is a typical antipsychotic drug effective in alleviating positive symptoms of schizophrenia by blocking dopamine receptor 2 (DR2). However, it is also known to produce neuropsychiatric effects by acting on various targets other than DR. In this study, we investigated effect of haloperidol on function of 5-hydroxytryptamine (5-HT) 3 receptor, a ligand-gated ion channel belonging to the serotonin receptor family using the whole-cell voltage clamp technique and NCB20 neuroblastoma cells. When co-applied with 5-HT, haloperidol inhibited 5-HT3 receptormediated currents in a concentration-dependent manner. A reduction in maximal effect (E max ) and an increase in EC 50 observed during co-application indicated that haloperidol could act as a non-competitive antagonist of 5-HT3 receptors. Haloperidol inhibited the activation of 5-HT3 receptor, while also accelerating their deactivation and desensitization. The inhibitory effect of haloperidol showed no significant difference between pre- and co-application. Haloperidol did not alter the reversal potential of 5-HT3 receptor currents. Furthermore, haloperidol did not affect recovery from deactivation or desensitization of 5-HT3 receptors. It did not show a use-dependent inhibition either. These findings suggest that haloperidol can exert its inhibitory effect on 5-HT3 receptors by allosterically preventing opening of ion channels. This mechanistic insight enhances our understanding of relationships between 5-HT3 receptors and pharmacological actions of antipsychotics.

Result Analysis
Print
Save
E-mail