1.Optimization Strategy and Practice of Traditional Chinese Medicine Compound and Its Component Compatibility
Zhihao WANG ; Wenjing ZHOU ; Chenghao FEI ; Yunlu LIU ; Yijing ZHANG ; Yue ZHAO ; Lan WANG ; Liang FENG ; Zhiyong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):299-310
Prescription optimization is a crucial aspect in the study of traditional Chinese medicine (TCM) compounds. In recent years, the introduction of mathematical methods, data mining techniques, and artificial neural networks has provided new tools for elucidating the compatibility rules of TCM compounds. The study of TCM compounds involves numerous variables, including the proportions of different herbs, the specific extraction parts of each ingredient, and the interactions among multiple components. These factors together create a complex nonlinear dose-effect relationship. In this context, it is essential to identify methods that suit the characteristics of TCM compounds and can leverage their advantages for effective application in new drug development. This paper provided a comprehensive review of the cutting-edge optimization experimental design methods applied in recent studies of TCM compound compatibilities. The key technical issues, such as the optimization of source material selection, dosage optimization of compatible herbs, and multi-objective optimization indicators, were discussed. Furthermore, the evaluation methods for component effects were summarized during the optimization process, so as to provide scientific and practical foundations for innovative research in TCM and the development of new drugs based on TCM compounds.
2.Prevalence and influencing factors of work-related musculoskeletal disorders of coal miners in a coal mine group
Xiaolan ZHENG ; Liuquan JIANG ; Ying ZHAO ; Hongxia ZHAO ; Fan YANG ; Qiang LI ; Li LI ; Yingjun CHEN ; Qingsong CHEN ; Gaisheng LIU
Journal of Environmental and Occupational Medicine 2025;42(3):278-285
Background The positive rate of work-related musculoskeletal disorders (WMSDs) among coal mine workers remains high, which seriously affects the quality of life of the workers. Objective To estimate the prevalence of WMSDs among coal miners in Shanxi Province and analyze their influencing factors. Methods From May to December 2023,
3.Effects of Different Microbial Fertilizers on Physiology and Rhizosphere Soil Environment of Codonopsis pilosula
Xia JIANG ; Junxi ZHAO ; Panpan SHI ; Xiaoxuan WANG ; Chenhui DU ; Shuosheng ZHANG ; Haixian ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):241-251
ObjectiveTo study the effects of applying different microbial fertilizers on the growth and rhizosphere soil environment of Codonopsis pilosula and provide a theoretical basis for ecological cultivation of this medicinal plant. MethodsSeven groups were designed, including CK (no application of microbial fertilizer), T1 (Trichoderma longibrachiatum fertilizer), T2 (Bacillus subtilis fertilizer), T3 (Trichoderma viride fertilizer), T4 (compound microbial fertilizer), T5 (C. pilosula stems and leaves fermented with compound microbial fertilizer), and T6 (Scutellaria baicalensis stems and leaves fermented with T. viride fertilizer). The physiological indicators, yield, and quality of C. pilosula and the physicochemical properties, enzyme activities, and microbial diversity in the rhizosphere soil of different fertilizer treatments were measured. ResultsGroup T1 showed slight decreases in soluble protein content (SPC) and superoxide dismutase (SOD). Groups T2-T6 showed increases in physiological indicators such as proline (Pro), soluble solids content (SSC), SPC, catalase (CAT), and peroxidase (POD) and a decrease in malondialdehyde (MDA) in C. pilosula leaves. All the fertilizer treatments increased the yield of C. pilosula and the total polysaccharide content in the roots. T1, T2, T3, T4, and T5 increased the total flavonoid content in the roots. Meanwhile, T4 increased the total saponin content in the roots. All the fertilizer treatments reduced the pH and increased the electric conductivity (EC), soil organic matter (SOM), and alkaline nitrogen (AN) in the soil. T2 and T5 increased the available phosphorus (AP), and T3, T4, T5, and T6 increased the available potassium (AK) in the soil. All the fertilizer treatments increased the activities of urease, sucrase, and CAT in the soil. Except that T1 decreased the bacterial diversity in the soil, other fertilizer treatments significantly increased bacterial and fungal diversity in the soil. Different fertilizer treatments significantly affected the composition of bacterial and fungal communities in the soil. At the phylum level, the dominant bacterial phyla included Proteobacteria, Acidobacteriota, and Bacteroideta, and the dominant fungal phyla were Ascomycota, Mortierellomycota, and unclassified_fungi in the rhizosphere soil of C. pilosula after bacterial fertilizer treatment. At the genus level, unclassified Gemmatimonadaceae, Sphingomonas, and unclassified Vicinamibacteraceae were the dominant bacterial genera, while unidentified, unclassified Fungi, and unclassified Sordariomycetes were the dominant fungal genera in the rhizosphere soil. The results of redundancy analysis indicated that the main physicochemical factors affecting changes of microbial communities in the rhizosphere soil of C. pilosula were pH, EC, AK, AN, AP, and soil organic matter (SOM) in the soil. The correlation heatmap showed that Bryobacter had significantly positive correlations with EC, AK, and AN. There was a significantly negative correlation between Fusarium and SOM. In summary, applying an appropriate amount of microbial fertilizer can promote the growth and improve the rhizosphere soil environment of C. pilosula. ConclusionThe compound microbial fertilizer and the C. pilosula stems and leaves fermented with compound microbial fertilizer can improve the soil nutrients, growth, development, yield, and quality of C. pilosula, and thus they can be applied to the artificial cultivation of C. pilosula.
4.Effects of Different Microbial Fertilizers on Physiology and Rhizosphere Soil Environment of Codonopsis pilosula
Xia JIANG ; Junxi ZHAO ; Panpan SHI ; Xiaoxuan WANG ; Chenhui DU ; Shuosheng ZHANG ; Haixian ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):241-251
ObjectiveTo study the effects of applying different microbial fertilizers on the growth and rhizosphere soil environment of Codonopsis pilosula and provide a theoretical basis for ecological cultivation of this medicinal plant. MethodsSeven groups were designed, including CK (no application of microbial fertilizer), T1 (Trichoderma longibrachiatum fertilizer), T2 (Bacillus subtilis fertilizer), T3 (Trichoderma viride fertilizer), T4 (compound microbial fertilizer), T5 (C. pilosula stems and leaves fermented with compound microbial fertilizer), and T6 (Scutellaria baicalensis stems and leaves fermented with T. viride fertilizer). The physiological indicators, yield, and quality of C. pilosula and the physicochemical properties, enzyme activities, and microbial diversity in the rhizosphere soil of different fertilizer treatments were measured. ResultsGroup T1 showed slight decreases in soluble protein content (SPC) and superoxide dismutase (SOD). Groups T2-T6 showed increases in physiological indicators such as proline (Pro), soluble solids content (SSC), SPC, catalase (CAT), and peroxidase (POD) and a decrease in malondialdehyde (MDA) in C. pilosula leaves. All the fertilizer treatments increased the yield of C. pilosula and the total polysaccharide content in the roots. T1, T2, T3, T4, and T5 increased the total flavonoid content in the roots. Meanwhile, T4 increased the total saponin content in the roots. All the fertilizer treatments reduced the pH and increased the electric conductivity (EC), soil organic matter (SOM), and alkaline nitrogen (AN) in the soil. T2 and T5 increased the available phosphorus (AP), and T3, T4, T5, and T6 increased the available potassium (AK) in the soil. All the fertilizer treatments increased the activities of urease, sucrase, and CAT in the soil. Except that T1 decreased the bacterial diversity in the soil, other fertilizer treatments significantly increased bacterial and fungal diversity in the soil. Different fertilizer treatments significantly affected the composition of bacterial and fungal communities in the soil. At the phylum level, the dominant bacterial phyla included Proteobacteria, Acidobacteriota, and Bacteroideta, and the dominant fungal phyla were Ascomycota, Mortierellomycota, and unclassified_fungi in the rhizosphere soil of C. pilosula after bacterial fertilizer treatment. At the genus level, unclassified Gemmatimonadaceae, Sphingomonas, and unclassified Vicinamibacteraceae were the dominant bacterial genera, while unidentified, unclassified Fungi, and unclassified Sordariomycetes were the dominant fungal genera in the rhizosphere soil. The results of redundancy analysis indicated that the main physicochemical factors affecting changes of microbial communities in the rhizosphere soil of C. pilosula were pH, EC, AK, AN, AP, and soil organic matter (SOM) in the soil. The correlation heatmap showed that Bryobacter had significantly positive correlations with EC, AK, and AN. There was a significantly negative correlation between Fusarium and SOM. In summary, applying an appropriate amount of microbial fertilizer can promote the growth and improve the rhizosphere soil environment of C. pilosula. ConclusionThe compound microbial fertilizer and the C. pilosula stems and leaves fermented with compound microbial fertilizer can improve the soil nutrients, growth, development, yield, and quality of C. pilosula, and thus they can be applied to the artificial cultivation of C. pilosula.
5.Zuoguiwan Regulates Pdx1 Pathway to Improve Pancreas Development in Offspring of Gestational Diabetes Mellitus Model Rats
Wanqiu LIANG ; Rang CHEN ; Le ZHAO ; Xiaoyi REN ; Qianhui SU ; Yonghui WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):10-19
ObjectiveTo explore the mechanism by which Zuoguiwan improves the pancreas development in the gestational diabetes mellitus (GDM) model by observing the effects of Zuoguiwan on the expression of key regulatory factors in different stages of pancreas development. MethodsPregnant Wistar rats were randomly assigned into blank, model, insulin detemir (20 U·kg-1) and Zuoguiwan (1.89 g·kg-1) groups (n=18). GDM was induced by peritoneal injection of streptozotocin on day 6.5 (E6.5d) in the embryonic stage, and the blank group was given an equal volume of sodium citrate buffer. The modeling performance was assessed by measuring the blood glucose of pregnant rats. Except the blank group and model group, pregnant rats in other groups were administrated with corresponding drugs from E9.5d to delivery. The random blood glucose of pregnant rats was monitored, and the embryos and offspring rats were measured for the length and weighed on E12.5d, E18.5d and day 21 after birth (B21d). The Lee's index of rats on B21d was calculated. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the fasting insulin (FINS) levels of B22d rats and the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) was calculated. The serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (TBIL), total cholesterol (CHO), triglyceride (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL) in E18.5d pregnant rats and B22d offspring were determined. The pathological changes in the pancreas of E12.5d, E18.5d and B22d rats were observed by hematoxylin-eosin (HE) staining. Western blot was used to determine the protein levels of pancreatic duodenal homeobox 1 (Pdx1), pancreas-specific transcription factor 1a (Ptf1a), and sex-determining region Y-box protein 9 (Sox9) in the pancreas of E12.5d embryos, Pdx1, Nkx2 homeobox 2 (Nkx2.2), and hairy and enhancer of split-1 (Hes1) in the pancreas of E18.5d embryos, and Pdx1, v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (Mafa), and NK transcription factor-related homeobox gene family 6 locus 1 (Nkx6.1) in the pancreas of B22d rats. ResultsCompared with the blank group, the model group showed elevated blood glucose levels in pregnant rats on B0d, E9.5d, E12.5d, E15.5d, and E18.5d (P<0.05, P<0.01), decreased body weight and body length (P<0.01) and increased Lee's index in the offspring. In addition, the B22d offspring showed rising levels of FBG, FINS, HOMA-IR, AST, and TG (P<0.01), a declined level of HDL (P<0.01), and pancreatic acinous cells with edema and loose arrangement. The pregnant rats on E18.5d exhibited raised levels of ALT, AST, and TG (P<0.05, P<0.01) in the pancreas and a declined level of HDL (P<0.05). The E12.5d embryos showed up-regulated protein levels of Pdx1, Sox9, and Ptf1a in the pancreas (P<0.01) and the E18.5d embryos exhibited down-regulated protein levels of Pdx1, Nkx2.2, and Hes1 in the pancreas (P<0.01). The protein levels of Pdx1, Nkx6.1, and Mafa in the pancreas of B22d offspring were down-regulated (P<0.01). Compared with the model group, the insulin group exhibited lowered blood glucose in pregnant rats on B0d, E15.5d, and E18.5d (P<0.05, P<0.01). The offspring in all treatment groups showcased increased body weight and body length (P<0.01) and decreased Lee's index. The B22d offspring exhibited declined levels of FBG, FINS, and HOMA-IR in the insulin group (P<0.01) and lowered levels of FBG and HOMA-IR in the Zuoguiwan group (P<0.01). The B22d offspring in all the treatment groups showed reduced levels of ALT, AST, TBIL, CHO, TG, and LDL, a raised level of HDL, and alleviated edema of pancreatic acinous cells. The pregnant rats on E18.5d demonstrated declined levels of TG and ALT (P<0.05, P<0.01) and an elevated level of HDL (P<0.05). The pancreas of E12.5d embryos presented down-regulated protein levels of Pdx1 and Sox9 and an up-regulated protein level of Ptf1a in the insulin group (P<0.05). The pancreas of E12.5d embryos in the Zuoguiwan group presented down-regulated protein levels of Pdx1, Sox9, and Ptf1a (P<0.01). All the treatment groups showed up-regulated protein levels of Pdx1, Nkx2.2, and Hes1 in the pancreas of E18.5d embryos (P<0.01) and Pdx1, Nkx6.1, and Mafa in the pancreas of B22d embryos (P<0.05, P<0.01). ConclusionZuoguiwan can promote the growth and development and ameliorate the pathological changes in the pancreas of the offspring of GDM model by regulating the expression of Pdx1 pathway-related regulatory factors in different stages of pancreas development.
6.Regulation of Oxidative Stress by Traditional Chinese Medicine in Prevention and Treatment of Myocardial Ischemia-reperfusion Injury: A Review
Haosen ZHAO ; Weijie REN ; Jiahao LI ; Peili WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):268-276
Myocardial ischemia-reperfusion injury (MIRI) is a major complication following coronary revascularization. Studies indicate that its pathophysiological mechanisms of MIRI are closely associated with oxidative stress, iron overload, inflammatory responses, and lipid peroxidation. Oxidative stress refers to an imbalance in redox homeostasis under pathological conditions, characterized by the abnormal accumulation of reactive oxygen species (ROS), which disrupts the dynamic balance between pro-oxidant systems and antioxidant defense networks. In recent years, traditional Chinese medicine (TCM) has demonstrated unique advantages in the prevention and treatment of MIRI due to its multi-target and multi-pathway antioxidant properties. Research reveals that TCM primarily exerts protective effects against oxidative stress-induced MIRI by regulating signaling pathways such as nuclear factor erythroid 2-related factor 2 (Nrf2), adenosine monophosphate-activated protein kinase (AMPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), nuclear factor kappa-B (NF-κB), Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3), and protein kinase C beta Ⅱ/nicotinamide adenine dinucleotide phosphate oxidase 2/reactive oxygen species (PKCβⅡ/NOX2/ROS). This article reviews recent literature on TCM monomers, compound formulas, and their active components, which alleviate oxidative stress to prevent and treat MIRI by modulating the aforementioned signaling pathways. It summarizes a concise overview of the molecular mechanisms by which oxidative stress-related signaling pathways lead to MIRI, discusses how TCM regulates these pathways to reduce oxidative stress-induced MIRI, and explores clinical application prospects and research challenges, aiming to provide a theoretical reference for the research and clinical management of MIRI.
7.Effects of peripheral blood-derived exosomes intervened by Naozhenning on injury of neuron induced by microglia
Li GAO ; Le ZHAO ; Liya WU ; Weiyi ZHANG ; Nan LI ; Nannan WEI ; Yonghui WANG
China Pharmacy 2025;36(19):2393-2398
OBJECTIVE To study the effects of peripheral blood-derived exosomes (Exo) intervened by Naozhenning (NZN) on injury of neuron cells HT22 induced by microglia BV-2 cells. METHODS Wistar rats were selected to prepare peripheral blood- derived Exo intervened by NZN (66.83 g/kg), referred to as NZN-Exo; peripheral blood-derived Exo intervened by normal saline and piracetam (PLXT, 1.62 g/kg) were prepared using the same method, denoted as KB-Exo and PLXT-Exo respectively, and all Exo were subsequently identified. Meanwhile, BV-2 cells were stimulated with 1 μg/mL lipopolysaccharide (LPS) to prepare LPS- stimulated supernatant, and non-LPS-stimulated supernatant was prepared following the same protocol. HT22 cells were divided into four groups: KB-Exo group (treated with non-LPS-stimulated supernatant+KB-Exo), model group (treated with LPS-stimulated supernatant+KB-Exo), PLXT-Exo group (treated with LPS-stimulated supernatant+PLXT-Exo), and NZN-Exo group (treated with LPS-stimulated supernatant+NZN-Exo), with the concentration of the corresponding Exo in all groups being 50 μg/mL. After 24 hours of culture, the proliferation of HT22 cells was detected by the CCK-8 assay and EdU assay; the apoptosis of HT22 cells was detected; the microstructure of HT22 cells was observed; the contents of interleukin-1β (IL-1β), IL-10, nuclear factor-κB (NF- κB), and tumor necrosis factor-α (TNF-α) in HT22 cells were measured, as well as the expression levels of TNF-α, NOD-like receptor thermal protein domain associated protein 3 (NLRP3), Caspase-1, B-cell lymphoma-2( Bcl-2), and Bcl-2-associated X protein (Bax). RESULTS KB-Exo, PLXT-Exo and NZN-Exo were successfully prepared, and all Exo exhibited typical cup-shaped contours and membrane-enclosed characteristics. Compared with KB-Exo group, model group showed significantly decreased cell proliferation rates (detected by CCK-8 and EdU), intracellular IL-10 levels, and Bcl-2 protein expression levels (P<0.05); while the cell apoptosis rate, intracellular levels of IL-1β, TNF-α, and NF-κB, as well as the expression levels of NLRP3, TNF-α, Caspase-1, and Bax proteins were significantly increased (P<0.05). Additionally, in the model group, the cells showed volume swelling, incomplete cell membrane, nucleolar rupture, significant swelling and deformation of mitochondria, and severe vacuolization. Compared with model group, the above quantitative indicators in the PLXT-Exo group and NZN-Exo group were significantly reversed (P<0.05), with large and round cell nuclei, intact nuclear membranes, and reduced mitochondrial vacuolization. CONCLUSIONS Peripheral blood-derived Exo intervened by naozhenning can alleviate the injury of neuronal cells HT22 by inhibiting inflammatory responses and cell apoptosis.
8.Exploration on JI Laixi's academic philosophy: "making use of various therapeutic methods, taking effectiveness as the first priority".
Nixuan GU ; Yaohui CUI ; Zhen GAO ; Jinji ZHAO ; Dingjun CAI ; Laixi JI
Chinese Acupuncture & Moxibustion 2025;45(10):1470-1476
The paper introduces the reconstruction of Professor JI Laixi's modern paradigm of thought, "making use of various therapeutic methods". Professor JI Laixi reveres the concept of "integration of western medicine and TCM" and advocates the "combination of advantageous techniques of acupuncture and moxibustion". Guided by the concept of "combination of superiority, and coordinated adjustment", a multi-mode intervention is delivered in treatment, including the operation with the nine needles, relaxation with acupotomy, acupoint thread-embedding, Chinese herbal compounds and adjuvant therapy with western medicines, so as to obtain dynamic adjustment of multiple targets and levels, "taking effectiveness as the first priority". The pathway of clinical practice is determined and clear, which provides a paradigm of "upholding the right and innovating" for the modernization of acupuncture and moxibustion.
Humans
;
Acupuncture Therapy/methods*
;
China
;
Moxibustion/history*
;
History, 20th Century
;
Medicine, Chinese Traditional/history*
;
Acupuncture/history*
9.The prospect and underlying mechanisms of Chinese medicine in treating periodontitis.
Aili XING ; Feng WANG ; Jinzhong LIU ; Yuan ZHANG ; Jingya HE ; Bin ZHAO ; Bin SUN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(3):269-285
Inflammation represents a critical immune response triggered by cellular activities and inflammatory mediators following tissue damage. It plays a central role in the pathological progression of diverse diseases, including psychiatric disorders, cancer, and immunological conditions, rendering it an essential target for therapeutic intervention. Periodontitis, a prevalent oral inflammatory disease, is a leading cause of tooth loss and poses significant health challenges globally. Traditionally, inflammatory diseases such as periodontitis have been treated with systemic administration of synthetic chemicals. However, recent years have witnessed challenges, including drug resistance and microbial dysbiosis associated with these treatments. In contrast, natural products derived from Chinese medicine offer numerous benefits, such as high safety profiles, minimal side effects, innovative pharmacological mechanisms, ease of extraction, and multiple targets, rendering them viable alternatives to conventional antibiotics for treating inflammatory conditions. Numerous effective anti-inflammatory natural products have been identified in traditional Chinese medicine (TCM), including alkaloids, flavonoids, terpenoids, lignans, and other natural products that exhibit inhibitory effects on inflammation and are potential therapeutic agents. Several studies have confirmed the substantial anti-inflammatory and immunomodulatory properties of these compounds. This comprehensive review examines the literature on the anti-inflammatory effects of TCM-derived natural products from databases such as PubMed, Web of Science, and CNKI, focusing on terms like "inflammation", "periodontitis", "pharmacology", and "traditional Chinese medicine". The analysis systematically summarizes the molecular pharmacology, chemical composition, and biological activities of these compounds in inflammatory responses, alongside their mechanisms of action. This research seeks to deepen understanding of the mechanisms and biological activities of herbal extracts in managing inflammatory diseases, potentially leading to the development of promising new anti-inflammatory drug candidates. Future applications could extend to the treatment of various inflammatory conditions, including periodontitis.
Humans
;
Periodontitis/immunology*
;
Drugs, Chinese Herbal/chemistry*
;
Medicine, Chinese Traditional
;
Animals
;
Anti-Inflammatory Agents/chemistry*
10.m6A modification regulates PLK1 expression and mitosis.
Xiaoli CHANG ; Xin YAN ; Zhenyu YANG ; Shuwen CHENG ; Xiaofeng ZHU ; Zhantong TANG ; Wenxia TIAN ; Yujun ZHAO ; Yongbo PAN ; Shan GAO
Chinese Journal of Biotechnology 2025;41(4):1559-1572
N6-methyladenosine (m6A) modification plays a critical role in cell cycle regulation, while the mechanism of m6A in regulating mitosis remains underexplored. Here, we found that the total m6A modification level in cells increased during mitosis by the liquid chromatography-mass spectrometry/mass spectrometry and m6A dot blot assays. Silencing methyltransferase-like 3 (METTL3) or METTL14 results in delayed mitosis, abnormal spindle assembly, and chromosome segregation defects by the immunofluorescence. By analyzing transcriptome-wide m6A targets in HeLa cells, we identified polo-like kinase 1 (PLK1) as a key gene modified by m6A in regulating mitosis. Specifically, through immunoblotting and RNA pulldown, m6A modification inhibits PLK1 translation via YTH N6-methyladenosine RNA binding protein 1, thus mediating cell cycle homeostasis. Demethylation of PLK1 mRNA leads to significant mitotic abnormalities. These findings highlight the critical role of m6A in regulating mitosis and the potential of m6A as a therapeutic target in proliferative diseases such as cancer.
Humans
;
Polo-Like Kinase 1
;
Cell Cycle Proteins/metabolism*
;
Proto-Oncogene Proteins/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
Mitosis/physiology*
;
HeLa Cells
;
Adenosine/genetics*
;
Methyltransferases/metabolism*
;
RNA, Messenger/metabolism*
;
RNA-Binding Proteins/metabolism*

Result Analysis
Print
Save
E-mail