2.Identification of rice htd1 allelic mutant and its regulatory role in grain size.
Yuqi YANG ; Zhining ZHANG ; Jun LIU ; Luyao TANG ; Yiting WEI ; Wen NONG ; Lu YIN ; Sanfeng LI ; Penggen DUAN ; Yuexing WANG ; Yuchun RAO
Chinese Journal of Biotechnology 2025;41(7):2789-2802
Rice is the world's largest food crop, and its yield and quality are directly related to food security and human health. Grain size, as one of the important factors determining the rice yield, has been widely concerned by breeders and researchers for a long time. To decipher the regulatory mechanism of rice grain size, we obtained a multi-tiller, dwarf, and small-grain mutant htd1 by ethyl methanesulfonate (EMS) mutation from the Japonica rice cultivar 'Zhonghua 11' ('ZH11'). Genetic analysis indicated that the phenotype of htd1 was controlled by a single recessive gene. Using the mutation site map (Mutmap) method, we identified the candidate gene OsHTD1, which encoded a carotenoid cleavage dioxygenase involved in the biosynthesis of strigolactone (SL). The SL content in htd1 was significantly lower than that in 'ZH11'. Cytological analysis showed that the grain size of the mutant decreased due to the reductions in the length and width of glume cells. The function of htd1 was further verified by the CRISPR/cas9 gene editing technology. The plants with the gene knockout exhibited similar grain size to the mutant. In addition, gene expression analysis showed that the expression levels of multiple grain size-related genes in the mutant changed significantly, suggesting that HTD1 may interact with other genes regulating grain size. This study provides a new theoretical basis for research on the regulatory mechanism of rice grain size and potential genetic resources for breeding the rice cultivars with high yields.
Oryza/growth & development*
;
Mutation
;
Edible Grain/growth & development*
;
Alleles
;
Plant Proteins/genetics*
;
Dioxygenases/genetics*
;
Lactones/metabolism*
;
Gene Expression Regulation, Plant
;
Genes, Plant
;
Gene Editing
;
CRISPR-Cas Systems
;
Phenotype
3.Map-based cloning and abiotic stress response analysis of rust spotted leaf 1 in rice.
Jun LIU ; Xiaoyan LIU ; Yiyun GE ; Yiting WEI ; Kangjie LING ; Luyao TANG ; Jiangmin XU ; Yuchun RAO
Chinese Journal of Biotechnology 2025;41(7):2871-2884
Rice (Oryza sativa L.) is an important food crop. The appearance of lesion mimics in rice leads to phytohormone disorders, which affects rice adaptation to environmental stresses and ultimately reduces the yield and quality. To explore whether the changes in the adaptability of rice lesion-mimic mutants to stressful environments are caused by the disorder of phytohormone metabolism in plants. In this study, we screened an ethyl methane sulfonate-treated population of the japonica cultivar 'Taipei 309' for a mutant with rust-like spots on leaves at the early tillering stage and brown-red spots at maturity and named it rsl1 (rust spotted leaf 1). Compared with the wild type, rsl1 showed decreases in plant height, panicle length, primary branch number, secondary branch number, filled grains per panicle, seed-setting rate, and 1 000-grain weight, and an increase in number of effective panicles. Genetic analysis indicated that rsl1 was controlled by a single recessive nuclear gene. RSL1 was localized between two molecular markers, B7-7 and B7-9, on rice chromosome 7 by map-based cloning. PCR sequencing of the annotated genes in this interval revealed a mutation of C1683A on the eighth exon of SPL5 (LOC_Os07g10390) in rsl1, which resulted in premature termination of protein translation. Exogenous phytohormone treatments showed that rsl1 was less sensitive to salicylic acid (SA), abscisic acid (ABA), and indo-3-acetic acid (IAA) and more sensitive to methyl jasmonate (MeJA) and gibberellin acid (GA) than the wild type. In addition, the survival rate of rsl1 was lower than that of the wild type under salt, alkali, drought, and high temperature stresses, and it was higher than that of the wild type under cold stress. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that RSL1 was involved in the regulation of ABA, SA, MeJA, IAA, and GA-related genes under abiotic stresses. The present study showed that the RSL1 mutation led to the appearance of lesion mimics and affected the growth, development, and stress resistance of rsl1 under abiotic stresses. The study of the functional mechanism of this gene can provide theoretical guidance for the research on rice stress resistance.
Oryza/microbiology*
;
Stress, Physiological/genetics*
;
Plant Diseases/genetics*
;
Cloning, Molecular
;
Chromosome Mapping
;
Plant Growth Regulators/metabolism*
;
Plant Proteins/genetics*
;
Mutation
;
Cyclopentanes
;
Genes, Plant
;
Plant Leaves/genetics*
;
Oxylipins
4.Application and prospects of synthetic biology in the genetic improvement of rice.
Luyao TANG ; Yiting WEI ; Yuqing XU ; Yuexing WANG ; Yuchun RAO
Chinese Journal of Biotechnology 2025;41(10):3840-3862
Synthetic biology, recognized as one of the most revolutionary interdisciplinary fields in the 21st century, has established innovative strategies for the genetic improvement of rice through the integration of multidisciplinary technologies including genome editing, genetic circuit design, metabolic engineering, and artificial intelligence. This review systematically summarizes recent research advancements and breakthrough achievements in the application of synthetic biology in the genetic improvement of rice, focusing on three critical domains: yield improvement, nutritional quality fortification, and reinforcement of disease resistance and abiotic stress tolerance. It elucidates that synthetic biology enables precise genomic and metabolic pathway engineering through modular, standard, and systematic approaches, effectively overcoming the limitations of conventional breeding methods characterized by prolonged cycles and restricted trait modification capabilities. The implementation of synthetic biology has facilitated synergistic improvement of multi-traits, thereby providing critical technical references for developing elite rice cultivars with superior productivity and nutritional value. These technological breakthroughs hold significant implications for ensuring global food security and promoting green and sustainable development of agriculture.
Oryza/growth & development*
;
Synthetic Biology/methods*
;
Metabolic Engineering
;
Plant Breeding/methods*
;
Gene Editing
;
Genetic Engineering/methods*
;
Plants, Genetically Modified/genetics*
;
Disease Resistance/genetics*
5.Quantitative trait locus(QTL) mapping and candidate gene expression analysis of cold tolerance of rice at plumule and seedling stages.
Beibei ZHAO ; Zhining ZHANG ; Yanan JIANG ; Chengxiang HU ; Luyi ZHANG ; Jun LIU ; Jiangmin XU ; Yuexing WANG ; Yuchun RAO
Chinese Journal of Biotechnology 2025;41(10):3939-3955
Rice (Oryza sativa L.), as a thermophilic crop, is highly susceptible to cold stress during its growth process. Chilling injury at the plumule stage and seedling stage often affects the morphological development and leads to yield reduction of rice. The exploration and utilization of cold tolerance genes are among the most direct and effective approaches to address cold stress in rice. To identify quantitative trait loci (QTLs) associated with cold tolerance at plumule and seedling stages, in this study, we measured the seedling rates and survived seedling rates of the indica rice cultivar 'HZ', the japonica cultivar 'Nekken2', and their 120 recombinant inbred lines (RILs) under cold stress. A previously constructed high-density genetic linkage map was used for the mapping of the QTLs conferring cold tolerance at the plumule and seedling stages. A total of 4 QTLs for plumule-stage cold tolerance and 9 QTLs for seedling-stage cold tolerance were detected, with the maximum limit of detection reaching 5.20. Notably, a genetically overlapping QTL for both plumule and seedling stages was identified on chromosome 8, spanning a physical interval of 24 432 953-25 295 129 bp. Candidate genes within the detected QTL intervals were screened, and quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to analyze the gene expression during the plumule and seedling stages. The results revealed that LOC_Os03g06570, LOC_Os03g07100, LOC_Os06g08280, LOC_Os08g38440, LOC_Os08g39100, and LOC_Os08g39540 exhibited significantly differential expression between the parental lines. These genes were either significantly downregulated or upregulated under cold stress. Among them, the first three gene (LOC_Os03g06570, LOC_Os03g07100, and LOC_Os06g08280) were hypothesized to be key candidates regulating the cold tolerance of rice seedlings, while the latter three genes (LOC_Os08g38440, LOC_Os08g39100, and LOC_Os08g39540) were identified as comprehensive regulators of cold tolerance during both plumule and seedling stages. These findings lay a foundation for the fine mapping and cloning of cold tolerance genes at the plumule and seedling stages, providing valuable insights for breeding cold-tolerant rice varieties.
Quantitative Trait Loci/genetics*
;
Oryza/growth & development*
;
Seedlings/growth & development*
;
Cold Temperature
;
Chromosome Mapping
;
Gene Expression Regulation, Plant
6.Mapping of QTL associated with rice cooking quality and candidate gene analysis.
Qiaona LE ; Ziwen HUANG ; Ruohui DAI ; Sanfeng LI ; Mengjia LI ; Yuan FANG ; Yuexing WANG ; Yuchun RAO
Chinese Journal of Biotechnology 2024;40(1):122-136
Excavating the quantitative trait locus (QTL) associated with rice cooking quality, analyzing candidate genes, and improving cooking quality-associated traits of rice varieties by genetic breeding can effectively improve the taste of rice. In this study, we used the indica rice HZ, the japonica rice Nekken2 and 120 recombinant inbred lines (RILs) populations constructed from them as experimental materials to measure the gelatinization temperature (GT), gel consistency (GC) and amylose content (AC) of rice at the maturity stage. We combined the high-density genetic map for QTL mapping. A total of 26 QTLs associated with rice cooking quality (1 QTL associated with GT, 13 QTLs associated with GC, and 12 QTLs associated with AC) were detected, among which the highest likelihood of odd (LOD) value reached 30.24. The expression levels of candidate genes in the localization interval were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), and it was found that the expression levels of six genes were significantly different from that in parents. It was speculated that the high expression of LOC_Os04g20270 and LOC_Os11g40100 may greatly increase the GC of rice, while the high expression of LOC_Os01g04920 and LOC_Os02g17500 and the low expression of LOC_Os03g02650 and LOC_Os05g25840 may reduce the AC. The results lay a molecular foundation for the cultivation of new high-quality rice varieties, and provide important genetic resources for revealing the molecular regulation mechanism of rice cooking quality.
Quantitative Trait Loci
;
Oryza/genetics*
;
Plant Breeding
;
Cooking
;
Genetic Association Studies
7.Exploring the innovative talents training mode in new era.
Li MA ; Siyi SHEN ; Yuchun RAO
Chinese Journal of Biotechnology 2024;40(1):292-303
Innovation is an important way to promote economic development and social progress. Recent years have seen rapid development of biological sciences. In response to social demands and the needs for developing an innovative country, fostering innovative talents in the field of biosciences has become a significant initiative supported by national policies and the needs from talent market. Taking the innovative talent training mode implemented by Zhejiang Normal University in the field of biological sciences as an example, this paper comprehensively introduces several key aspects of the mode. This includes establishing a mentorship system as the foundation, carrying out curriculum reform through project competitions and practical platforms, and promoting synergy among industry, academia, and research in talent training. This training mode has achieved positive results in practice, promoting the training of outstanding innovative talents in biological science majors, and may facilitate the reform of talent training in similar majors.
Humans
;
Biological Science Disciplines
;
Industry
;
Policy
;
Universities
8.Application of CRISPR-Cas9 gene editing technology in crop breeding.
Wenjing YIN ; Zhengai CHEN ; Jiahui HUANG ; Hanfei YE ; Tao LU ; Mei LU ; Yuchun RAO
Chinese Journal of Biotechnology 2023;39(2):399-424
The CRISPR-Cas9 system is composed of a clustered regularly interspaced short palindromic repeat (CRISPR) and its associated proteins, which are widely present in bacteria and archaea, serving as a specific immune protection against viral and phage secondary infections. CRISPR-Cas9 technology is the third generation of targeted genome editing technologies following zinc finger nucleases (ZFNs) and transcription activator like effector nucleases (TALENs). The CRISPR-Cas9 technology is now widely used in various fields. Firstly, this article introduces the generation, working mechanism and advantages of CRISPR-Cas9 technology; secondly, it reviews the applications of CRISPR-Cas9 technology in gene knockout, gene knock-in, gene regulation and genome in breeding and domestication of important food crops such as rice, wheat, maize, soybean and potato. Finally, the article summarizes the current problems and challenges encountered by CRISPR-Cas9 technology and prospects future development and application of CRISPR-Cas9 technology.
Gene Editing
;
CRISPR-Cas Systems/genetics*
;
Plant Breeding
;
Crops, Agricultural/genetics*
;
Technology
9.Construction and preliminary validation of a risk prediction model for the recurrence of diabetic foot ulcer in diabetic patients
Qingjiao GUO ; Jing OUYANG ; Jiaqin RAO ; Yizhi ZHANG ; Lihong YU ; Wanying XU ; Jinhua LONG ; Xiuhua GAO ; Xiaoyan WU ; Ying GU
Chinese Journal of Burns 2023;39(12):1149-1157
Objective:To develop a risk prediction model for the recurrence of diabetic foot ulcer (DFU) in diabetic patients and primarily validate its predictive value.Methods:Meta-analysis combined with retrospective cohort study was conducted. The Chinese and English papers on risk factors related to DFU recurrence publicly published in China Biology Medicine disc, China National Knowledge Infrastructure, Wanfang Database, VIP Database, and PubMed, Embase, Cochrane Library, and Web of Science, and the search time was from the establishment date of each database until March 31 st, 2022. The papers were screened and evaluated, the data were extracted, a meta-analysis was performed using RevMan 5.4.1 statistical software to screen risk factors for DFU recurrence, and Egger's linear regression was used to assess the publication bias of the study results. Risk factors for DFU recurrence mentioned in ≥3 studies and with statistically significant differences in the meta-analysis were selected as the independent variables to develop a logistic regression model for risk prediction of DFU recurrence. The medical records of 101 patients with DFU who met the inclusion criteria and were admitted to Affiliated Hospital of Guizhou Medical University from January 2019 to June 2022 were collected. There were 69 males and 32 females, aged (63±14) years. The receiver operating characteristic (ROC) curve of the predictive performance of the above constructed predictive model for DFU recurrence was drawn, and the area under the ROC curve, maximum Youden index, and sensitivity and specificity at the point were calculated. Dataset including data of 8 risk factors for DFU recurrence and the DFU recurrence rates of 10 000 cases was simulated using RStudio software and a scatter plot was drawn to determine two probabilities for risk division of DFU recurrence. Using the β coefficients corresponding to 8 DFU recurrence risk factors ×10 and taking the integer as the score of coefficient weight of each risk factor, the total score was obtained by summing up, and the cutoff scores for risk level division were calculated based on the total score × two probabilities for risk division of DFU recurrence. Results:Finally, 20 papers were included, including 3 case-control studies and 17 cohort studies, with a total of 4 238 cases and DFU recurrence rate of 22.7% to 71.2%. Meta-analysis showed that glycosylated hemoglobin >7.5% and with plantar ulcer, diabetic peripheral neuropathy, diabetic peripheral vascular disease, smoking, osteomyelitis, history of amputation/toe amputation, and multidrug-resistant bacterial infection were risk factors for the recurrence of DFU (with odds ratios of 3.27, 3.66, 4.05, 3.94, 1.98, 7.17, 11.96, 3.61, 95% confidence intervals of 2.79-3.84, 2.06-6.50, 2.50-6.58, 2.65-5.84, 1.65-2.38, 2.29-22.47, 4.60-31.14, 3.13-4.17, respectively, P<0.05). There were no statistically significant differences in publication biases of diabetic peripheral neuropathy, diabetic peripheral vascular disease, glycosylated hemoglobin >7.5%, plantar ulcer, smoking, multidrug-resistant bacterial infection, or osteomyelitis ( P>0.05), but there was a statistically significant difference in the publication bias of amputation/toe amputation ( t=-30.39, P<0.05). The area under the ROC curve of the predictive model was 0.81 (with 95% confidence interval of 0.71-0.91) and the maximum Youden index was 0.59, at which the sensitivity was 72% and the specificity was 86%. Ultimately, 29.0% and 44.8% were identified respectively as the cutoff for dividing the probability of low risk and medium risk, and medium risk and high risk for DFU recurrence, while the corresponding total scores of low, medium, and high risks of DFU recurrence were <37, 37-57, and 58-118, respectively. Conclusions:Eight risk factors for DFU recurrence are screened through meta-analysis and the risk prediction model for DFU recurrence is developed, which has moderate predictive accuracy and can provide guidance for healthcare workers to take interventions for patient with DFU recurrence risk.
10.Analysis on spatial distribution of tuberculosis in China, 2012-2014
Jin FAN ; Huaxiang RAO ; Peng WU ; Jie ZHANG ; Yanping WU ; Jinhua PAN ; Wenhan LI ; Lixia QIU
Chinese Journal of Epidemiology 2017;38(7):926-930
Objective To analyze the spatial distribution of the incidence of tuberculosis (TB)in China from 2012 to 2014 and provide evidence for the prevention and control of TB.Methods The database of TB in China from 2012 to 2014 was established by using geographical information system,the spatial distribution map was drawn,trend analysis and spatial autocorrelation analysis were conducted to explore the spatial distribution pattern of TB and identify hot areas.Results The trend surface analysis showed that the incidence of TB decreased gradually from the west to the east in China,and the U type curve could reflect the TB distribution from the south to the north;Global spatial autocorrelation analysis showed the 2012-2014 global Moran's I were 0.366,0.364 and 0.358(P<0.01),suggesting that the incidence of TB had a spatial clustering in China;Local Getis-OrdGi spatial autocorrelation analysis by ArcGIS software showed that there was 11 cluster areas,3 high incidence areas (Xinjiang,Tibet,Qinghai) and 8 low incidence areas (Beijing,Tianjin,Shanghai,Hebei,Inner Mongolia,Shanxi,Shandong,Jiangsu).Conclusion The incidence of TB had obviously spatial clustering characteristic,the areas at high risk were mainly in the northwestern and plateau area in China.

Result Analysis
Print
Save
E-mail