1.Mechanism of Lijin manipulation regulating scar formation in skeletal muscle injury repair in rabbits
Kaiying LI ; Xiaoge WEI ; Fei SONG ; Nan YANG ; Zhenning ZHAO ; Yan WANG ; Jing MU ; Huisheng MA
Chinese Journal of Tissue Engineering Research 2025;29(8):1600-1608
BACKGROUND:Lijin manipulation can promote skeletal muscle repair and treat skeletal muscle injury.However,the formation of fibrosis and scar tissue hyperplasia are closely related to the quality of skeletal muscle repair.To study the regulatory effect of Lijin manipulation on the formation of fibrosis and scar tissue hyperplasia is helpful to explain the related mechanism of Lijin manipulation to improve the repair quality of skeletal muscle injury. OBJECTIVE:To explore the mechanism of Lijin manipulation to improve the repair quality of skeletal muscle injury in rabbits,thereby providing a scientific basis for clinical treatment. METHODS:Forty-five healthy adult Japanese large-ear white rabbits were randomly divided into blank group,model group and Lijin group,with 15 rats in each group.Gastrocnemius strike modeling was performed in both model group and Lijin group.The Lijin group began to intervene with tendon manipulation on the 3rd day after modeling,once a day,and 15 minutes at a time.Five animals in each group were killed on the 7th,14th and 21st days after modeling.The morphology and inflammatory cell count of gastrocnemius were observed by hematoxylin-eosin staining,the collagen fiber amount was observed by Masson staining,the expression of interleukin-6 and interleukin-10 in gastrocnemius was detected by ELISA.The protein and mRNA expressions of paired cassette gene 7,myogenic differentiation factor,myoblastogenin,alpha-actin,transforming growth factor beta 1,and type Ⅰ collagen were detected by western blot and RT-PCR,respectively,and the expression of type Ⅰ collagen protein was detected by immunohistochemistry. RESULTS AND CONCLUSION:Hematoxylin-eosin staining and Masson staining showed that compared with the model group,inflammatory cell infiltration and collagen fiber content decreased in the Lijin group(P<0.01),and the muscle fibers gradually healed.ELISA results showed that compared with the model group,the expression of interleukin-6 in the Lijin group continued to decrease(P<0.05),and the expression of interleukin-10 increased on the 7th day after modeling(P<0.05)and then showed a decreasing trend(P<0.05).Western blot and RT-PCR results showed that compared with the model group,the protein and mRNA expressions of paired cassette gene 7,myogenic differentiation factor,myoblastogenin in the Lijin group were significantly increased on the 14th day after modeling(P<0.05),but decreased on the 21st day(P<0.05);the protein and mRNA expressions of alpha-actin,transforming growth factor beta 1,and type Ⅰ collagen in the Lijin group were significantly decreased compared with those in the model group(P<0.05).Immunohistochemical results showed that the expression of type Ⅰ collagen in the Lijin group was significantly lower than that in the model group(P<0.05).To conclude,Lijin manipulation could improve the repair quality of skeletal muscle injury by inhibiting inflammation,promoting the proliferation and differentiation of muscle satellite cells,and reducing fibrosis.
2.Exercise Regulates Structural Plasticity and Neurogenesis of Hippocampal Neurons and Improves Memory Impairment in High-fat Diet-induced Obese Mice
Meng-Si YAN ; Lin-Jie SHU ; Chao-Ge WANG ; Ran CHENG ; Lian-Wei MU ; Jing-Wen LIAO
Progress in Biochemistry and Biophysics 2025;52(4):995-1007
ObjectiveObesity has been identified as one of the most important risk factors for cognitive dysfunction. Physical exercise can ameliorate learning and memory deficits by reversing synaptic plasticity in the hippocampus and cortex in diseases such as Alzheimer’s disease. In this study, we aimed to determine whether 8 weeks of treadmill exercise could alleviate hippocampus-dependent memory impairment in high-fat diet-induced obese mice and investigate the potential mechanisms involved. MethodsA total of sixty 6-week-old male C57BL/6 mice, weighing between 20-30 g, were randomly assigned to 3 distinct groups, each consisting of 20 mice. The groups were designated as follows: control (CON), high-fat diet (HFD), and high-fat diet with exercise (HFD-Ex). Prior to the initiation of the treadmill exercise protocol, the HFD and HFD-Ex groups were fed a high-fat diet (60% fat by kcal) for 20 weeks. The mice in the HFD-Ex group underwent treadmill exercise at a speed of 8 m/min for the first 10 min, followed by 12 m/min for the subsequent 50 min, totally 60 min of exercise at a 0° slope, 5 d per week, for 8 weeks. We employed Y-maze and novel object recognition tests to assess hippocampus-dependent memory and utilized immunofluorescence, Western blot, Golgi staining, and ELISA to analyze axon length, dendritic complexity, number of spines, the expression of c-fos, doublecortin (DCX), postsynaptic density-95 (PSD95), synaptophysin (Syn), interleukin-1β (IL-1β), and the number of major histocompatibility complex II (MHC-II) positive cells. ResultsMice with HFD-induced obesity exhibit hippocampus-dependent memory impairment, and treadmill exercise can prevent memory decline in these mice. The expression of DCX was significantly decreased in the HFD-induced obese mice compared to the control group (P<0.001). Treadmill exercise increased the expression of c-fos (P<0.001) and DCX (P=0.001) in the hippocampus of the HFD-induced obese mice. The axon length (P<0.001), dendritic complexity (P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P<0.001) in the hippocampus were significantly decreased in the HFD-induced obese mice compared to the control group. Treadmill exercise increased the axon length (P=0.002), dendritic complexity(P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P=0.001) of the hippocampus in the HFD-induced obese mice. Our study found a significant increase in MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of HFD-induced obese mice compared to the control group. Treadmill exercise was found to reduce the number of MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of obese mice induced by a HFD. ConclusionTreadmill exercise led to enhanced neurogenesis and neuroplasticity by increasing the axon length, dendritic complexity, dendritic spine numbers, and the expression of PSD95 and DCX, decreasing the number of MHC-II positive cells and neuroinflammation in HFD-induced obese mice. Therefore, we speculate that exercise may serve as a non-pharmacologic method that protects against HFD-induced hippocampus-dependent memory dysfunction by enhancing neuroplasticity and neurogenesis in the hippocampus of obese mice.
3.Application of Engineered Exosomes in Tumor-targeted Therapy
Jia-Lu SONG ; Yi-Xin JIN ; Xing-Yu MU ; Yu-Huan JIANG ; Jing WANG
Progress in Biochemistry and Biophysics 2025;52(5):1140-1151
Tumors are the second leading cause of death worldwide. Exosomes are a type of extracellular vesicle secreted from multivesicular bodies, with particle sizes ranging from 40 to 160 nm. They regulate the tumor microenvironment, proliferation, and progression by transporting proteins, nucleic acids, and other biomolecules. Compared with other drug delivery systems, exosomes derived from different cells possess unique cellular tropism, enabling them to selectively target specific tissues and organs. This homing ability allows them to cross biological barriers that are otherwise difficult for conventional drug delivery systems to penetrate. Due to their biocompatibility and unique biological properties, exosomes can serve as drug delivery systems capable of loading various anti-tumor drugs. They can traverse biological barriers, evade immune responses, and specifically target tumor tissues, making them ideal carriers for anti-tumor therapeutics. This article systematically summarizes the methods for exosome isolation, including ultracentrifugation, ultrafiltration, size-exclusion chromatography (SEC), immunoaffinity capture, and microfluidics. However, these methods have certain limitations. A combination of multiple isolation techniques can improve isolation efficiency. For instance, combining ultrafiltration with SEC can achieve both high purity and high yield while reducing processing time. Exosome drug loading methods can be classified into post-loading and pre-loading approaches. Pre-loading is further categorized into active and passive loading. Active loading methods, including electroporation, sonication, extrusion, and freeze-thaw cycles, involve physical or chemical disruption of the exosome membrane to facilitate drug encapsulation. Passive loading relies on drug concentration gradients or hydrophobic interactions between drugs and exosomes for encapsulation. Pre-loading strategies also include genetic engineering and co-incubation methods. Additionally, we review approaches to enhance the targeting, retention, and permeability of exosomes. Genetic engineering and chemical modifications can improve their tumor-targeting capabilities. Magnetic fields can also be employed to promote the accumulation of exosomes at tumor sites. Retention time can be prolonged by inhibiting monocyte-mediated clearance or by combining exosomes with hydrogels. Engineered exosomes can also reshape the tumor microenvironment to enhance permeability. This review further discusses the current applications of exosomes in delivering various anti-tumor drugs. Specifically, exosomes can encapsulate chemotherapeutic agents such as paclitaxel to reduce side effects and increase drug concentration within tumor tissues. For instance, exosomes loaded with doxorubicin can mitigate cardiotoxicity and minimize adverse effects on healthy tissues. Furthermore, exosomes can encapsulate proteins to enhance protein stability and bioavailability or carry immunogenic cell death inducers for tumor vaccines. In addition to these applications, exosomes can deliver nucleic acids such as siRNA and miRNA to regulate gene expression, inhibit tumor proliferation, and suppress invasion. Beyond their therapeutic applications, exosomes also serve as tumor biomarkers for early cancer diagnosis. The detection of exosomal miRNA can improve the sensitivity and specificity of diagnosing prostate and pancreatic cancers. Despite their promising potential as drug delivery systems, challenges remain in the standardization and large-scale production of exosomes. This article explores the future development of engineered exosomes for targeted tumor therapy. Plant-derived exosomes hold potential due to their superior biocompatibility, lower toxicity, and abundant availability. Furthermore, the integration of exosomes with artificial intelligence may offer novel applications in diagnostics, therapeutics, and personalized medicine.
4.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
5.Effect of Shufeng Jiedu Capsules on Relieving Influenza Virus Pneumonia by Suppressing TLR/NF-κB Pathway in Respiratory Epithelial Cells
Zihan GENG ; Lei BAO ; Shan CAO ; Qiang ZHU ; Jun PAN ; Shuran LI ; Ronghua ZHAO ; Jing SUN ; Yanyan BAO ; Shaoqiu MU ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):61-68
ObjectiveTo investigate the possible mechanism of Shufeng Jiedu capsules (SFJD) in alleviating influenza A (H1N1) virus pneumonia and focus on its effect on Toll-like receptor (TLR) signaling pathway in respiratory epithelial cells. MethodsA mouse model of viral pneumonia was established via the A/PR/8/34 (PR8) strain of influenza A virus. Mice were randomly divided into a normal group, a PR8 infection (PR8) group, and an SFJD group (8.4 g·kg-1), with 10 mice in each group. The day of infection was designated as day 1. The SFJD group was administered intragastrically at a volume of 20 mL·kg-1 daily, while the normal and PR8 groups were given an equal volume of deionized water. Micro-computed tomography (Micro-CT) was performed on day 5, and the mice were dissected to collect their lungs, after which the lung index was calculated to verify the therapeutic effect of SFJD. Single-cell sequencing was used to analyze the differentially expressed genes in respiratory epithelial cells. Multiplex fluorescence immunohistochemistry was employed to detect the expression of TLR, tumor necrosis factor receptor-associated factor 6 (TRAF6), and myeloid differentiation factor 88 (MyD88) proteins in epithelial cell adhesion molecule (EpCAM)-positive cells, and the proportion of respiratory epithelial cells expressing TLR pathway proteins was calculated. Respiratory epithelial cells were then sorted by flow cytometry, and Western blot was used to detect the expression of TLR, MyD88, TRAF6, Toll-interleukin receptor domain-containing adaptor inducing interferon-β (TRIF), inhibitor of κB kinase α (IKKα), and nuclear factor-κB (NF-κB) in the sorted epithelial cells. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in lung tissue. ResultsAt the transcriptional level, SFJD reversed the expression of TLR signaling pathway genes in respiratory epithelial cells, downregulating multiple TLR signaling pathway-related genes (P<0.01). At the protein level, SFJD significantly reduced the proportion of respiratory epithelial cells expressing TLR3 (P<0.05), the expression levels of TLR2, TLR3, TLR4, TRIF, TRAF6, IKKα, and NF-κB in epithelial cells(P<0.05, P<0.01), as well as the levels of pro-inflammatory cytokines IL-1β and TNF-α in lung tissue (P<0.01). ConclusionSFJD may alleviate viral pneumonia by suppressing the expression of TLR in respiratory epithelial cells and their subsequent signaling cascades.
6.Mortality, morbidity, and care practices for 1750 very low birth weight infants, 2016-2021
Yang HE ; Meng ZHANG ; Jun TANG ; Wanxiu LIU ; Yong HU ; Jing SHI ; Hua WANG ; Tao XIONG ; Li ZHANG ; Junjie YING ; Dezhi MU
Chinese Medical Journal 2024;137(20):2452-2460
Background::Very low birth weight (VLBW) infants are the key populations in neonatology, wherein morbidity and mortality remain major challenges. The study aimed to analyze the clinical characteristics of VLBW infants.Methods::A retrospective cohort study was conducted in West China Second Hospital between January 2016 and December 2021. Neonates with a birth weight of <1500 g were included. Mortality, care practices, and major morbidities were analyzed, and compared with those of previous 7 years (2009-2015).Results::Of the total 1750 VLBW, 1386 were infants born with birth weight between 1000-1499 g and 364 infants were born with weight below 1000 g; 42.9% (751/1750) required delivery room resuscitation; 53.9% (943/1750) received non-invasive ventilation only; 38.2% (669/1750) received invasive ventilation; 1517 VLBW infants received complete treatment. Among them, 60.1% (912/1517) of neonates had neonatal respiratory distress syndrome (NRDS), 28.7% (436/1517) had bronchopulmonary dysplasia (BPD), 22.0% (334/1517) had apnea, 11.1% (169/1517) had culture-confirmed sepsis, 8.4% (128/1517) had pulmonary hemorrhage, 7.6% (116/1517) had severe intraventricular hemorrhage (IVH)/periventricular leukomalacia (PVL), 5.7% (87/1517) had necrotizing enterocolitis (NEC), and 2.0% (31/1517) had severe retinopathy of prematurity. The total and in-hospital mortality rates were 9.7% (169/1750) and 3.0% (45/1517), respectively. The top three diagnoses of death among those who had received complete treatment were sepsis, NRDS, and NEC. In 2009-2015, 1146 VLBW were enrolled and 895 infants received complete treatment. The proportions of apnea, IVH, and IVH stage ≥3/PVL, were higher in 2009-2015 compared with those in 2016-2021, while the proportions of NRDS and BPD were characterized by significant increases in 2016-2021. The total and in-hospital mortality rates were 16.7% (191/1146) and 5.6% (50/895) respectively in 2009-2015.Conclusion::Among VLBW infants born in 2016-2021, the total and in-hospital mortality rates were lower than those of neonates born in 2009-2015. Incidences of NRDS and BPD increased in 2016-2021, which affected the survival rates and long-term prognosis of VLBW.
7.Genetic diversity of Ixodes persulcatus in parts of Inner Mongolia
Meng-Yu CUI ; Si SU ; Li-Li XING ; Lan MU ; Rui-Juan GAO ; Qi-Qi GUO ; Hong REN ; Dong-Dong QI ; Jing-Feng YU
Chinese Journal of Zoonoses 2024;40(4):295-301
The aim of this study was to clarify the genetic diversity and population history of Ixodes persulcatus in some ar-eas of Inner Mongolia in order to provide accurate data for effective vector control programs and reveal the transmission mecha-nism.Samples were collected in 10 areas of Inner Mongolia during the active tick season(April 2021-July 2023)using the flag-dragging and manual sampling methods.The 16S rRNA and COI gene were sequenced to clarify genetic diversity of I.per-sulcatus.The positivity rates for the COI gene and 16S rRNA were 90.00%and 98.33%respectively.Overall,18 and 15 haplotypes were identified for the COI gene and 16S rRNA,respectively,with a total haplotype diversity>0.762 and total nucleotide diversity<0.005.The Tajima's values and Fu's Fs were negative for significance.A nucleotide mismatch map was shown as a single peak.The genetic differentiation index FST of the population indicates a small degree of genetic differ-entiation of the population,while analysis of molecular vari-ance indicates that the variation within populations was greater than between populations.Phylogenetic tree and haplotype network plots showed confounding distributions between hap-lotypes.I.persulcatus from the Hinggan League and Hulun-buir regions can adapt to environmental changes and possess abundant genetic diversity.Genetic differentiation is mainly concentrated within the population and no geographical isolation was observed.
8.Effects of BMAL2 on Aerobic Glycolysis and Cell Proliferation in Acute Myeloid Leukemia Cells
Wei-Jing JIA ; Jiao MU ; Wen-Jing CUI
Journal of Experimental Hematology 2024;32(2):402-408
Objective:To explore the expression of basic helix-loop-helix ARNT like 2(BMAL2)in acute myeloid leukemia(AML)patients and its correlation with prognosis,and analyze its effects on the aerobic glycolysis and proliferation of AML cells.Methods:The expressions of BMAL2 in bone marrow mononuclear cells(BMMCs)of AML patients and normal control group were detected by RT-qPCR.The correlation of BMAL2 expression with prognosis of AML patients was analyzed using public database of National Center for Biotechnology Information(NCBI).The interfering in BMAL2 expression of HL-60 and Kasumi-1 cells was performed using lentiviral vector-mediated shRNA.Cell glucose metabolism and proliferation were detected by using glucose uptake experiment,lactate content test,CCK-8 assay and cell colony formation test.Results:The expression level of BMAL2 mRNA in BMMCs of AML patients was significantly higher than normal control group(P<0.01).The overall survival time of AML patients with high expression of BMAL2 was significantly shorter than those with low expression of BMAL2(P<0.05).Knockdown of BMAL2 significantly reduced glucose uptake and lactate production in AML cell line HL-60 and Kasumi-1 cells.The results of RT-PCR and Western blot showed that BMAL2 promoted aerobic glycolysis by enhancing the expression of HIF1A in AML cells,thereby promoting cell proliferation.Conclusion:BMAL2 is highly expressed in AML patients,and promotes aerobic glycolysis by enhancing the expression of HIF1A,thereby promoting cell proliferation.
9.Association between taste disorders and novel coronavirus infection in patients with type 2 diabetes mellitus
Xiaowei WEI ; Jie ZHAO ; Bin WANG ; Jinyi SHI ; Jing WANG ; Yumei MU ; Yueying YANG ; Aihong WANG
Chinese Journal of Diabetes 2024;32(8):608-612
Objective To investigate the current status of taste disorders in type 2 diabetes mellitus(T2DM)and to explore whether the taste disorders persists after 3 months of novel corona virus(COVID-19)infection.Methods 95 T2DM out patients(23 without COVID-19 infection history,72 infected with COVID-19 3~4 months ago)visiting the Endocrine Department of the Strategic Support Force Medical Center from February 20 to March 10,2023 were collected.Taste test box was used to test the taste function.General information,biochemical indicators,taste disorders,etc.were compared between the two groups.Results The average age of T2DM patients in this group was(58.3±9.6)years old,61 patients were male(64.2%),the median duration of DM was 11 years,and the median HbA1c was 7.3%.In taste testing,the proportion of sour,sweet,bitter,salty taste perception disorders was 60.0%,45.3%,57.9%,41.1%,84.2%.The average number of days from infection to enrollment into COVID-19 group was 102.4 days.The proportion of acid,sweet,bitter and salty sensory disorders was 61.1%,44.4%,55.6%and 41.7%in COVID-19 group and 56.5%,47.8%,65.2%and 39.1%in non-COVID-19 group.The prevalence of taste disorders in COVID-19 group was higher than that in non-COVID-19 group(86.1%vs 78.3%).Conclusions Taste disorders are common in T2DM patients.Compared with uninfected T2DM patients,there is no significant difference in the prevalence of taste disorders 3 months after COVID-19 infection.
10.Effect of Estimated Pulse Wave Velocity on New-onset Diabetes
Chunpeng JI ; Bing HAN ; Shuo WANG ; Jing MU ; Shouling WU ; Guodong WANG
Chinese Circulation Journal 2024;39(10):1016-1021
Objectives:To evaluate the association between estimated pulse wave velocity(ePWV)and risk of new-onset diabetes. Methods:A total of 82 440 employees without prior diabetes who participated in the health examination from July 2006 to October 2007 were selected as the observation cohort,participants were followed-up for a mean of(13.19±3.73)years.The study population was divided into four groups according to the ePWV quartiles:group Q1(ePWV<12.35 m/s,n=20 610),group Q2(12.35 m/s≤ePWV<13.74 m/s,n=20 610),group Q3(13.74 m/s≤ePWV<15.16 m/s,n=20 611),and group Q4(ePWV≥15.16 m/s,n=20 609).ROC curve was used to analyze the predictive value of ePWV for new-onset diabetes.The incidence density of diabetes in each group was calculated.After adjustment for the traditional cardiovascular risk factors(including sex,smoking,drinking,exercise,education level,family history of cardiovascular disease,history of myocardial infarction,history of stroke,body mass index,total cholesterol,fasting blood glucose,uric acid and high-sensitivity C-reactive protein),multivariate Cox regression models were used to evaluate the association between ePWV and risk of new-onset diabetes. Results:The area under the ROC curve of ePWV was 0.60 in the prediction of new-onset diabetes,and the optimal cut-offvalue was 12.78 m/s.With the increase of ePWV quartile,the incidence density of diabetes showed an increasing trend,which was 5.84/1 000 person years,12.04/1 000 person years,15.70/1 000 person years and 16.87/1 000 person years,respectively.After adjusting for the traditional cardiovascular risk factors,the risk of new onset diabetes increased by 9%(HR=1.09,95%CI:1.08-1.11,P<0.01)for each 1 m/s increase in ePWV.Subgroup analysis showed that higher ePWV was significantly associated with increased risk of new-onset diabetes regardless of presence or absence of cardiovascular risk factors,male or female,and age<51 years or age≥51 years,with the HR(95%CI)values of 1.07(1.05-1.08)and 1.21(1.08-1.36),1.07(1.06-1.09)and 1.17(1.15-1.20),1.22(1.19-1.24)and 1.06(1.04-1.07). Conclusions:ePWV has a certain predictive value for new-onset diabetes and is an independent risk factor for new-onset diabetes.

Result Analysis
Print
Save
E-mail