1.Treatment Effect on Structure and Function of Submandibular Gland in Sjögren's Syndrome Model Mice by Artemisinin
Ziwei HUANG ; Qian HE ; Jiahe LIAO ; Xinbo YU ; Jing LUO ; Weijiang SONG ; Qingwen TAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):158-165
ObjectiveTo investigate the effects of artemisinin (ART) on histopathological damage and salivary secretion in the submandibular gland (SMG) of mice with Sjögren's syndrome (SS) model,and on the expression of aquaporin 5 (AQP5) in SMG cells. MethodsThe NOD/Ltj mice were used as a model of SS and randomly divided into the SS model group,the ART group,and the hydroxychloroquine sulfate (HCQ) group,with six mice per group. Another 6 female BALB/c mice at the same week were selected as the control group. Mice in the ART group was fed with the ART solution daily in the dosage of 50 mg·kg-1,and mice in the HCQ group was given with the HCQ solution (1 300 mg·kg-1). Mice in the SS model and control groups were given saline daily. The treatment lasted for 8 weeks. The 24-hour average water intake,salivary flow rate,SMG pathology scores of mice in each group were measured,as well as the expression levels of AQP5 protein and gene in the SMG tissues. ResultsCompared with the control group,the 24-hour average water intake of mice in the model group was significantly increased (P<0.01),and the saliva flow rate was significantly decreased (P<0.01). Compared to the SS model group,the 24-hour average water intake of mice in the ART and HCQ groups was significantly reduced (P<0.01),and the salivary flow rate was significantly increased in the ART group(P<0.01),comparisons between groups showed that the ART was superior to the HCQ in reducing water intake and improving saliva flow rate in SS model mice (P<0.05). The HE staining results showed that,compared with the normal group,the number of lymphocyte infiltration foci in SMG tissue in the model group increased,and the pathological score increased (P<0.01). Compared to the SS model group,after the intervention of the ART and HCQ,the number of lymphocytic infiltration foci in the SMG tissue decreased,the area of the lymphocytic infiltration foci was reduced,and the pathology score of the SMG tissues was lowered in the ART group(P<0.01). However,there was no difference in pathological scores between the ART and HCQ groups . The results of IHC,Western blot,and Real-time PCR showed that,compared with the normal group,the expression levels of AQP5 protein and gene in SMG tissue in the model group significantly decreased (P<0.05). Comparing with the SS model group,the ART and HCQ groups could significantly up-regulated the expression levels of AQP5 protein and mRNA in the SMG tissue,and the treatment effect was better than that of HCQ. ConclusionART was able to ameliorate SMG structural damage and salivary secretion function in SS model mice,and its mechanism of action may be related to the up-regulation of AQP5 protein and gene expression levels in SMG cells.
2.Study on anti-atherosclerosis mechanism of blood components of Guanxin Qiwei tablets based on HPLC-Q-Exactive-MS/MS and network pharmacology
Yuan-hong LIAO ; Jing-kun LU ; Yan NIU ; Jun LI ; Ren BU ; Peng-peng ZHANG ; Yue KANG ; Yue-wu WANG
Acta Pharmaceutica Sinica 2025;60(2):449-458
The analysis presented here is based on the blood components of Guanxin Qiwei tablets, the key anti-atherosclerosis pathway of Guanxin Qiwei tablets was screened by network pharmacology, and the anti-atherosclerosis mechanism of Guanxin Qiwei tablets was clarified and verified by cell experiments. HPLC-Q-Exactive-MS/MS technique was used to analyze the components of Guanxin Qiwei tablets into blood, to determine the precise mass charge ratio of the compounds, and to conduct a comprehensive analysis of the components by using secondary mass spectrometry fragments and literature comparison. Finally, a total of 42 components of Guanxin Qiwei tablets into blood were identified. To better understand the interactions, we employed the Swiss Target Prediction database to predict the associated targets. Atherosclerosis (AS) disease targets were searched in disease databases Genecard, OMIM and Disgent, and 181 intersection targets of disease targets and component targets were obtained by Venny 2.1.0 software. Protein interactions were analyzed by String database. The 32 core targets were selected by Cytscape software. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed in DAVID database. It was found that the anti-atherosclerosis pathways of Guanxin Qiwei tablets mainly include lipid metabolism and atherosclerosis and AGE-RAGE signaling pathway in diabetic complications and other signal pathways. The core targets and the core compounds were interlinked, and it was found that cryptotanshinone and tanshinone ⅡA in Guanxin Qiwei tablets were well bound to TNF, PPAR
3.Comprehensive Evaluation of Acupuncture for Secondary Dysmenorrhea Based on Health Technology Assessment
Xue WU ; Zhiran LI ; Jing HU ; Xing LIAO ; Weiwei SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):165-174
ObjectiveTo carry out a health technology assessment (HTA) of acupuncture for secondary dysmenorrhea (SD) caused by adenomyosis and endometriosis, in order to provide a reference for relevant medical decision-making. MethodsFrom the perspective of the health system, the assessment covers seven areas, including the technical characteristics, safety, effectiveness, economics, ethical fairness, organizational adaptability, and impact on patients and society. The results are reported accordingly. ResultsThe operational specifications of acupuncture are standardized, and the conditions for its use are clearly defined. Acupuncture has a lower overall incidence of adverse events. The main adverse events are localized pain, subcutaneous bleeding, and dizziness, with most symptoms being mild, all of which have corresponding standard treatments. No reports on occupational or environmental safety were found, and the safety operation specifications are available for reference. Compared with conventional Western medicine, acupuncture demonstrates higher effectiveness. Acupuncture may improve the quality of life scores of patients, though no significant difference was observed. The cost of acupuncture is higher than that of conventional Western medicine, but its overall economic value is greater. The informed consent information is relatively comprehensive. Most patients are aware of the potential benefits and risks of acupuncture and voluntarily opt for it. The treatment process fully respects patient privacy and human rights. The clinical application of acupuncture follows the current acupuncture medical service model, with no special requirements for the level of medical institutions. Patient accessibility and affordability are suitable. Patient satisfaction is high. Most patients indicated they would choose acupuncture again for SD. The main barriers to choosing acupuncture are psychological factors (such as fear of acupuncture), cost, and transportation issues. Nearly 70% of patients receiving acupuncture treatment benefit from medical insurance reimbursement, with reimbursement rates generally above 50%, indicating strong social security support. ConclusionThe implementation of HTA for acupuncture in the treatment of SD, using the standards for traditional Chinese medicine (TCM), is feasible. The implementation steps are clear, the data sources for each evaluation domain are adequate, the analysis methods are practical, and the evaluation results are comprehensive. Experts recommend that the findings be used as a reference for relevant medical decision-making.
4.Exercise Regulates Structural Plasticity and Neurogenesis of Hippocampal Neurons and Improves Memory Impairment in High-fat Diet-induced Obese Mice
Meng-Si YAN ; Lin-Jie SHU ; Chao-Ge WANG ; Ran CHENG ; Lian-Wei MU ; Jing-Wen LIAO
Progress in Biochemistry and Biophysics 2025;52(4):995-1007
ObjectiveObesity has been identified as one of the most important risk factors for cognitive dysfunction. Physical exercise can ameliorate learning and memory deficits by reversing synaptic plasticity in the hippocampus and cortex in diseases such as Alzheimer’s disease. In this study, we aimed to determine whether 8 weeks of treadmill exercise could alleviate hippocampus-dependent memory impairment in high-fat diet-induced obese mice and investigate the potential mechanisms involved. MethodsA total of sixty 6-week-old male C57BL/6 mice, weighing between 20-30 g, were randomly assigned to 3 distinct groups, each consisting of 20 mice. The groups were designated as follows: control (CON), high-fat diet (HFD), and high-fat diet with exercise (HFD-Ex). Prior to the initiation of the treadmill exercise protocol, the HFD and HFD-Ex groups were fed a high-fat diet (60% fat by kcal) for 20 weeks. The mice in the HFD-Ex group underwent treadmill exercise at a speed of 8 m/min for the first 10 min, followed by 12 m/min for the subsequent 50 min, totally 60 min of exercise at a 0° slope, 5 d per week, for 8 weeks. We employed Y-maze and novel object recognition tests to assess hippocampus-dependent memory and utilized immunofluorescence, Western blot, Golgi staining, and ELISA to analyze axon length, dendritic complexity, number of spines, the expression of c-fos, doublecortin (DCX), postsynaptic density-95 (PSD95), synaptophysin (Syn), interleukin-1β (IL-1β), and the number of major histocompatibility complex II (MHC-II) positive cells. ResultsMice with HFD-induced obesity exhibit hippocampus-dependent memory impairment, and treadmill exercise can prevent memory decline in these mice. The expression of DCX was significantly decreased in the HFD-induced obese mice compared to the control group (P<0.001). Treadmill exercise increased the expression of c-fos (P<0.001) and DCX (P=0.001) in the hippocampus of the HFD-induced obese mice. The axon length (P<0.001), dendritic complexity (P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P<0.001) in the hippocampus were significantly decreased in the HFD-induced obese mice compared to the control group. Treadmill exercise increased the axon length (P=0.002), dendritic complexity(P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P=0.001) of the hippocampus in the HFD-induced obese mice. Our study found a significant increase in MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of HFD-induced obese mice compared to the control group. Treadmill exercise was found to reduce the number of MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of obese mice induced by a HFD. ConclusionTreadmill exercise led to enhanced neurogenesis and neuroplasticity by increasing the axon length, dendritic complexity, dendritic spine numbers, and the expression of PSD95 and DCX, decreasing the number of MHC-II positive cells and neuroinflammation in HFD-induced obese mice. Therefore, we speculate that exercise may serve as a non-pharmacologic method that protects against HFD-induced hippocampus-dependent memory dysfunction by enhancing neuroplasticity and neurogenesis in the hippocampus of obese mice.
5.Efficacy and mechanism of Guizhi Tongluo Tablets in alleviating atherosclerosis by inhibiting CD72hi macrophages.
Xing-Ling HE ; Si-Jing LI ; Zi-Ru LI ; Dong-Hua LIU ; Xiao-Jiao ZHANG ; Huan HE ; Xiao-Ming DONG ; Wen-Jie LONG ; Wei-Wei ZHANG ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(5):1298-1309
This study investigates the effect and underlying mechanism of Guizhi Tongluo Tablets(GZTL) in treating atherosclerosis(AS) in a mouse model. Apolipoprotein E-knockout(ApoE~(-/-)) mice were randomly assigned to the following groups: model, high-, medium-, and low-dose GZTL, and atorvastatin(ATV), and age-matched C57BL/6J mice were selected as the control group. ApoE~(-/-) mice in other groups except the control group were fed with a high-fat diet for the modeling of AS and administrated with corresponding drugs via gavage for 8 weeks. General conditions, signs of blood stasis, and body mass of mice were monitored. Aortic plaques and their stability were assessed by hematoxylin-eosin, Masson, and oil red O staining. Serum levels of total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) were measured by biochemical assays, and those of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) were determined via enzyme-linked immunosorbent assay. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL). Single-cell RNA sequencing(scRNA-seq) was employed to analyze the differential expression of CD72hi macrophages(CD72hi-Mφ) in the aortas of AS patients and mice. The immunofluorescence assay was employed to visualize CD72hi-Mφ expression in mouse aortic plaques, and real-time fluorescence quantitative PCR was utilized to determine the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. The results demonstrated that compared with the control group, the model group exhibited significant increases in body mass, aortic plaque area proportion, necrotic core area proportion, and lipid deposition, a notable decrease in collagen fiber content, and an increase in apoptosis. Additionally, the model group showcased elevated serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6, alongside marked upregulations in the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. In comparison with the model group, the GZTL groups and the ATV group showed a reduction in body mass, and the medium-and high-dose GZTL groups and the ATV group demonstrated reductions in aortic plaque area proportion, necrotic core area proportion, and lipid deposition, an increase in collagen fiber content, and a decrease in apoptosis. Furthermore, the treatment goups showcased lowered serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6. The data of scRNA-seq revealed significantly elevated CD72hi-Mφ signaling in carotid plaques of AS patients compared with that in the normal arterial tissue. Animal experiments confirmed that CD72hi-Mφ expression, along with several pro-inflammatory cytokines, was significantly upregulated in the aortas of AS mice, which were downregulated by GZTL treatment. In conclusion, GZTL may alleviate AS by inhibiting CD72hi-Mφ activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atherosclerosis/immunology*
;
Mice
;
Mice, Inbred C57BL
;
Macrophages/immunology*
;
Male
;
Humans
;
Apolipoproteins E/genetics*
;
Tablets
;
Tumor Necrosis Factor-alpha/genetics*
;
Apoptosis/drug effects*
;
Interleukin-1beta/genetics*
;
Interleukin-6/genetics*
;
Disease Models, Animal
;
Mice, Knockout
6.Differences in intestinal absorption characteristics of Rubus multibracteatus extract in normal and inflammatory pain model rats by in-vitro everted intestine sac method.
Ming-Li BAO ; Qing ZHANG ; Yang JIN ; Yi CHEN ; Jian-Qing PENG ; Si-Ying CHEN ; Zhi-Jie MA ; Jian LIAO ; Jing HUANG ; Zi-Peng GONG
China Journal of Chinese Materia Medica 2025;50(16):4690-4704
This study compared the differences in intestinal absorption characteristics of eleven active components in Rubus multibracteatus(RM) extract(protocatechuic acid, tiliroside, scutellarin, luteoloside, astragalin, epicatechin, catechin, xanthotoxin, p-coumaric acid, caffeic acid, and apigenin-7-O-glucuronide) between normal rats and inflammatory pain model rats using the in-vitro everted intestinal sac model. The RM extract was administered at absorption concentrations of 25.0, 50.0, and 100.0 mg·mL~(-1). The contents of the eleven components in intestinal absorption solution samples were quantified by ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS), and their cumulative absorption(Q) and absorption rate constant(K_a) were calculated to evaluate the absorption characteristics of these components in normal rats and inflammatory pain model rats. The results show that except for catechin, epicatechin, and caffeic acid, the cumulative absorption-time curves of the other eight components(protocatechuic acid, tiliroside, scutellarin, luteoloside, astragalin, xanthotoxin, p-coumaric acid, and apigenin-7-O-glucuronide) exhibit an upward trend without saturation, with correlation coefficients(R~2) all > 0.9, indicating linear absorption. However, the overall absorption of all components is not dose-dependent with increasing concentration, suggesting that their absorption mechanisms are not solely passive diffusion. In both normal and model rats, the jejunum shows the highest absorption for all components except xanthotoxin. The overall absorption of seven components(excluding protocatechuic acid, caffeic acid, apigenin-7-O-glucuronide, and luteoloside) in normal rats is better than that in model rats across all intestinal segments. These findings indicate that the pathological state of inflammatory pain alters the intestinal absorption of RM extract, and its mechanism needs further investigation.
Animals
;
Rats
;
Intestinal Absorption/drug effects*
;
Male
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/metabolism*
;
Disease Models, Animal
;
Pain/metabolism*
;
Intestines/drug effects*
;
Intestinal Mucosa/metabolism*
7.Ferrum@albumin assembled nanoclusters inhibit NF-κB signaling pathway for NIR enhanced acute lung injury immunotherapy.
Xiaoxuan GUAN ; Binbin ZOU ; Weiqian JIN ; Yan LIU ; Yongfeng LAN ; Jing QIAN ; Juan LUO ; Yanjun LEI ; Xuzhi LIANG ; Shiyu ZHANG ; Yuting XIAO ; Yan LONG ; Chen QIAN ; Chaoyu HUANG ; Weili TIAN ; Jiahao HUANG ; Yongrong LAI ; Ming GAO ; Lin LIAO
Acta Pharmaceutica Sinica B 2025;15(11):5891-5907
Acute lung injury (ALI) has been a kind of acute and severe disease that is mainly characterized by systemic uncontrolled inflammatory response to the production of huge amounts of reactive oxygen species (ROS) in the lung tissue. Given the critical role of ROS in ALI, a Fe3O4 loaded bovine serum albumin (BSA) nanocluster (BF) was developed to act as a nanomedicine for the treatment of ALI. Combining with NIR irradiation, it exhibited excellent ROS scavenging capacity. Significantly, it also displayed the excellent antioxidant and anti-inflammatory functions for lipopolysaccharides (LPS) induced macrophages (RAW264.7), and Sprague Dawley rats via lowering intracellular ROS levels, reducing inflammatory factors expression levels, inducing macrophage M2 polarization, inhibiting NF-κB signaling pathway, increasing CD4+/CD8+ T cell ratios, as well as upregulating HSP70 and CD31 expression levels to reprogram redox homeostasis, reduce systemic inflammation, activate immunoregulation, and accelerate lung tissue repair, finally achieving the synergistic enhancement of ALI immunotherapy. It finally provides an effective therapeutic strategy of BF + NIR for the management of inflammation related diseases.
8.Application and Production of Systematic Review and Meta-Analyses of Preclinical Studies in the Field of Traditional Chinese Medicine
Wenya WANG ; Chengyang JING ; Lanjun SHI ; Bin MA ; Xing LIAO
Journal of Traditional Chinese Medicine 2025;66(13):1333-1339
Preclinical studies include pharmacology, toxicology, pharmacokinetics research of animal experiments and in vitro experiments, which are crucial steps in the pre-marketing drugs and medical products, and are essential for exploring the mechanisms of traditional Chinese Medicine (TCM) therapeutic mechanism and promoting clinical translation. Systematic reviews and meta-analyses of preclinical studies in the field of TCM can comprehensively integrate preclinical evidence, consolidate research findings, assess the quality and risk of bias of included studies, enhance the utilization of research results, reduce resource waste, and promote the iterative optimization of TCM research models and evaluation indicators. This article introduced the process and methodology of conducting systematic review and meta-analyses of preclinical studies in TCM from nine steps, defining the research question, forming a research team, writing and registering a study protocol, conducting a comprehensive search, screening literature, evaluating included studies, extracting data, synthesizing data (meta-analysis), and reporting systematic reviews. It aims to provide methodological references for conducting systematic reviews and meta-analyses of preclinical studies in TCM and to promote the establishment and improvement of the evidence system in the field of TCM.
9.Impact of childhood trauma on internet addiction in medical students: the mediating role of perceived stress
Xiaohong PENG ; Xiaoyuan LIAO ; Dantong WU ; Yanyin ZHOU ; Yelu LIU ; Yuxiang WANG ; Luoya ZHANG ; Juan DENG ; Yanjie PENG ; Kezhi LIU ; Jing CHEN ; Wei LEI
Sichuan Mental Health 2025;38(3):267-272
BackgroundWith the rapid development of the networking technologies, internet addiction has increasingly become a serious mental health issue. Previous studies have revealed the link between childhood trauma and internet addiction, while the mediating role of perceived stress in this link is not yet clear. ObjectiveTo investigate the role of medical students' perceived stress in the relationship between childhood trauma and internet addiction, so as to provide references for the intervention of internet addiction. MethodsFrom February to March 2023, a random sampling technique was used to select 1 232 undergraduate students from the School of Clinical Medical Sciences of Southwest Medical University as research subjects. The Childhood Trauma Questionnaire-Short Form (CTQ-SF), Perceived Stress Scale (PSS), Internet Gaming Disorder Scale (IGDS), and Bergen Social Media Addiction Scale (BSMAS) were used for assessment. Pearson's correlation coefficients were calculated. The mediation effect of perceived stress in the relationship between childhood trauma and internet addiction was tested using Model 4 in the SPSS Process 4.1, and Bootstrapping procedure involving 5 000 replicates was employed to confirm the statistical significance. ResultsA total of 1 016 (82.47%) valid completed questionnaires were gathered. The CTQ-SF scores of medical students were positively correlated with PSS scores, IGD scores, and BSMAS scores (r=0.583, 0.474, 0.465, P<0.01). PSS scores were positively correlated with IGD scores and BSMAS scores (r=0.369, 0.479, P<0.01). Childhood trauma in medical students was found to positively predict perceived stress (β=0.191, P<0.01), social media addiction (β=0.160, P<0.01), and internet gaming disorder (β=0.106, P<0.01). Perceived stress played a significant mediating role in the relationship between childhood trauma and internet gaming disorder, indirect effect value was 0.018 (95% CI: 0.009~0.027), accounting for 16.98%. Perceived stress also exhibited a significant mediating role in the relationship between childhood trauma and social media addiction, indirect effect value was 0.063 (95% CI: 0.048~0.079), accounting for 39.38%. ConclusionChildhood trauma in medical students may affect internet gaming disorder and social media addiction through perceived stress. [Funded by 2022 Annual Research Project of Sichuan Applied Psychology Research Center,(number,CSXL-22102)]
10.Mechanism of astragalin in allevating ulcerative colitis in mice through modulation of the intestinal flora
Jing HUANG ; Yanhua LIAO ; Xinying MO ; Yuting YANG ; Weizhe JIANG
China Pharmacy 2025;36(14):1709-1716
OBJECTIVE To explore the potential mechanisms of astragalin (AG) in allevating ulcerative colitis (UC) in mice through modulation of the intestinal flora. METHODS Male C57BL/6 mice were randomly divided into normal group (CON group), model group [dextran sodium sulfate (DSS) group], 5-aminosalicylic acid group (5-ASA group), AG low-dose group and high-dose group (AGL and AGH groups), with 8 mice in each group. The mice UC model was established by drinking 3% DSS solution continuously for 7 days in all groups except the CON group. After that, 3% DSS solution was replaced by water, and the mice of each drug group were gavaged with the corresponding drug solution. Mice in the CON and DSS groups were gavaged with an equal volume of normal saline, once a day, for 7 days. After the last gavage, the body weight change index, disease activity index (DAI) score, colon length and spleen index, and levels of inflammatory factors (tumor necrosis factor-α, interleukin-1β, interleukin-6) were compared among the mice in each group; pathological changes in colonic tissues of the mice were observed in each group, and the pathological score and the percentage of goblet cells were compared; mRNA expressions of barrier-related factors [occludin and ZO-1] and inflammation-related factors [silencing information regulatory factor 1 (SIRT1), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK)] were detected in each group of mice; the changes in the intestinal flora of mice in each group were analyzed and the contents of intestinal metabolites short-chain fatty acids (SCFAs) was determined. Using DSS and AG-treated fecal bacterial liquid as an intervention, the mechanism of anti-UC effect of AG was further verified by a fecal microbiota transplant experiment. RESULTS Compared with the CON group, the intestinal mucosal structure of mice in the DSS group was severely damaged, with obvious infiltration of inflammatory cells collapsing the wall; their body weight change index, colon length, the percentage of goblet cells, mRNA expressions of occludin, ZO-1 and SIRT1, Chao1 and Shannon indexes, and contents of acetic acid and butyric acid were significantly reduced, shortened or down-regulated (P<0.05); however, DAI score, spleen index, levels of inflammatory factors, pathological score, as well as mRNA expressions of p38 MAPK and JNK, were all significantly increased or up-regulated (P<0.05). Compared with the DSS group, colon tissue lesions of AG mice in all dose groups showed different degrees of improvement, and the above quantitative indexes were generally regressed (P<0.05), and the intervention effect of AG-treated fecal bacterial fluid was basically the same as that of AG. CONCLUSIONS AG can improve relevant symptoms in UC mice and reduce their inflammatory response and colonic histopathological changes. The above effects may be related to regulating the diversity of intestinal flora in mice, increasing the contents of butyric acid and propionic acid, and promoting the repair of the colonic mucosal barrier, thus regulating the expressions of genes related to the SIRT1/p38 MAPK inflammatory pathway.

Result Analysis
Print
Save
E-mail