1.GAO Shuzhong's Experience in Treating Idiopathic Tinnitus with Combination of Acupuncture and Chinese Materia Medica
Pengfei WANG ; Yiyang SUN ; Xiaoyan LI ; Wenli YAN ; Ningning MENG ; Guirong YANG ; Yuxia MA
Journal of Traditional Chinese Medicine 2025;66(3):233-237
To summarize Professor GAO Shuzhong's clinical experience in treating idiopathic tinnitus with a combination of acupuncture and Chinese meteria medica. It is believed that idiopathic tinnitus is mostly caused by weak lungs and spleen, kidney essence deficiency, liver constraint transforming into fire, and binding constraint of heart qi. Treatment advocates the combination of acupuncture and Chinese meteria medica in clinical practice. Acupuncture treatment mainly focus on the method of opening the orifices by syndrome identification in combination with Ermen (TE 21), Tinggong (SI 19), Tinghui (GB 2), Shenmai (BL 62) to regulate qi and blood, and supporting with Baihui (GV 20), Yintang (EX-HN 3), Taichong (LR 3), and Yanglingquan (GB 34) to soothe the liver, resolve constraint, and calm the mind. Oral administration of Chinese medicinal prescription usually includes modified Yiqi Congming Decoction (益气聪明汤) and Tongqi Powder (通气散), and the external administration of Chinese medicinal prescription can apply self-prescribed Wenqing Powder (温清散) to navel moxibustion.
2.Research progress of artificial intelligence in the diagnosis and treatment of polypoidal choroidal vasculopathy
Yuting YANG ; Xingming LIAO ; Hongjie MA
International Eye Science 2025;25(3):416-421
Polypoidal choroidal vasculopathy(PCV)is one of the important subtypes of neovascular age-related macular degeneration(nARMD), which causes severe vision loss. It is necessary to distinguish PCV from other nARMD subtypes to guide the clinical treatment plans and predict disease outcomes. In recent years, artificial intelligence(AI)has been widely used in the diagnosis and research of ophthalmic diseases. By utilizing machine learning or deep learning combined with examination images in disease classification, lesion segmentation, and quantitative assessment, etc. This article reviews the recent applications of AI in the differential diagnosis of PCV through various examination images, the segmentation and quantification of biomarkers, as well as the prediction of genotype, response to anti-vascular endothelial growth factor(VEGF)therapy, and the short-term risk of vitreous hemorrhage. It summarizes the difficulties and challenges in clinical practice of AI and looks forward to the advantages and development trends of AI in PCV applications in the future. The article aims to provide more information for further research and application, thereby improving the diagnostic rate of PCV, optimizing treatment plans, and improving patients' visual prognosis.
3.Research progress of artificial intelligence in the diagnosis and treatment of polypoidal choroidal vasculopathy
Yuting YANG ; Xingming LIAO ; Hongjie MA
International Eye Science 2025;25(3):416-421
Polypoidal choroidal vasculopathy(PCV)is one of the important subtypes of neovascular age-related macular degeneration(nARMD), which causes severe vision loss. It is necessary to distinguish PCV from other nARMD subtypes to guide the clinical treatment plans and predict disease outcomes. In recent years, artificial intelligence(AI)has been widely used in the diagnosis and research of ophthalmic diseases. By utilizing machine learning or deep learning combined with examination images in disease classification, lesion segmentation, and quantitative assessment, etc. This article reviews the recent applications of AI in the differential diagnosis of PCV through various examination images, the segmentation and quantification of biomarkers, as well as the prediction of genotype, response to anti-vascular endothelial growth factor(VEGF)therapy, and the short-term risk of vitreous hemorrhage. It summarizes the difficulties and challenges in clinical practice of AI and looks forward to the advantages and development trends of AI in PCV applications in the future. The article aims to provide more information for further research and application, thereby improving the diagnostic rate of PCV, optimizing treatment plans, and improving patients' visual prognosis.
4.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
5.Mechanism of Ruyan Neixiao Cream in Promoting Ferroptosis in Breast Precancerous Lesion Cells by Regulating Nrf2/SLC7A11/GPX4 Signaling Pathway
Haotian ZHANG ; Yebei QIU ; Ran SU ; Xianxin YAN ; Min MA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):98-107
ObjectiveTo explore the mechanism by which Ruyan Neixiao cream (RUC) induces ferroptosis in breast precancerous lesion (BPL) cells, and to enrich the theoretical foundation for its use in the treatment of BPL. MethodsThe inhibition of cell proliferation by 1%, 2%, and 4% concentrations of Ruyanneixiao Cream transdermal solution (RUT) was assessed using cell counting kit-8 (CCK-8) and a colony formation assay. Reactive oxygen species (ROS) were measured using the DCFH-DA probe, and the levels of ferrous ions (Fe2+), glutathione (GSH), and malondialdehyde (MDA) were determined using appropriate kits. Lipid peroxidation was detected with the C11-BODIPY581/591 fluorescent probe. The expression of nuclear factor E2-related factor 2 (Nrf2), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) proteins was analyzed by Western blot. The BPL rat model was constructed using 2,2′-bis(hydroxymethyl)butyric acid (DMBA) combined with estrogen and progesterone, and the rats were treated with RUC for external application. After the 12th cycle, the rats were euthanized, and histopathological changes in breast tissue were observed by hematoxylin-eosin (HE) staining. Fe2+ and MDA levels in breast tissue were measured using corresponding kits. The expression of Nrf2, SLC7A11, and GPX4 proteins in BPL rat breast tissue was detected by immunohistochemistry (IHC) and Western blot. ResultsCompared with the matrix group, the cell viability of MCF-10AT cells in the 1%, 2%, and 4% RUT groups was significantly reduced (P<0.05) in a concentration-dependent manner, with the 24-hour half inhibitory concentration (IC50) being 2.23%. Compared with the 4% RUT group, cell viability in the RUT + Fer-1 group was significantly increased (P<0.05). Compared with the matrix group, the colony formation rates of MCF-10AT cells in the 1%, 2%, and 4% RUT groups were significantly decreased (P<0.05). Compared with the 4% RUT group, the cell colony formation rate of the RUT + Fer-1 group was significantly increased (P<0.05). Compared with the matrix group, the levels of ROS and Fe2+ in the 1%, 2%, and 4% RUT groups were significantly increased (P<0.05), while GSH levels were significantly decreased (P<0.05), and MDA and lipid peroxidation levels were significantly increased (P<0.05). Compared with the 4% RUT group, ROS and Fe2+ levels in the RUT + Fer-1 group were significantly reduced (P<0.05), while GSH levels were significantly increased (P<0.05), and MDA and lipid peroxidation levels were significantly reduced (P<0.05). Compared with the matrix group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the 1%, 2%, and 4% RUT groups were significantly decreased (P<0.05). Compared with the 4% RUT group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the RUT + Fer-1 group were significantly increased (P<0.05). In the in vivo experiment, compared with the matrix group, the breast tissue histopathological status of the BPL rats in the RUC group was effectively improved, with less dilatation of the mammary ducts and more orderly duct arrangement. No pathological morphology indicative of invasive cancer was observed. Compared with the matrix group, Fe2+ and MDA levels in the mammary tissue of the RUC group were significantly increased (P<0.05). Compared with the matrix group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the mammary tissue of the RUC group were significantly reduced (P<0.05). ConclusionRUC may induce ferroptosis in BPL cells by inhibiting the Nrf2/SLC7A11/GPX4 signaling pathway, increasing Fe2+ accumulation, and promoting lipid peroxidation.
6.Mechanism of Ruyan Neixiao Cream in Promoting Ferroptosis in Breast Precancerous Lesion Cells by Regulating Nrf2/SLC7A11/GPX4 Signaling Pathway
Haotian ZHANG ; Yebei QIU ; Ran SU ; Xianxin YAN ; Min MA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):98-107
ObjectiveTo explore the mechanism by which Ruyan Neixiao cream (RUC) induces ferroptosis in breast precancerous lesion (BPL) cells, and to enrich the theoretical foundation for its use in the treatment of BPL. MethodsThe inhibition of cell proliferation by 1%, 2%, and 4% concentrations of Ruyanneixiao Cream transdermal solution (RUT) was assessed using cell counting kit-8 (CCK-8) and a colony formation assay. Reactive oxygen species (ROS) were measured using the DCFH-DA probe, and the levels of ferrous ions (Fe2+), glutathione (GSH), and malondialdehyde (MDA) were determined using appropriate kits. Lipid peroxidation was detected with the C11-BODIPY581/591 fluorescent probe. The expression of nuclear factor E2-related factor 2 (Nrf2), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) proteins was analyzed by Western blot. The BPL rat model was constructed using 2,2′-bis(hydroxymethyl)butyric acid (DMBA) combined with estrogen and progesterone, and the rats were treated with RUC for external application. After the 12th cycle, the rats were euthanized, and histopathological changes in breast tissue were observed by hematoxylin-eosin (HE) staining. Fe2+ and MDA levels in breast tissue were measured using corresponding kits. The expression of Nrf2, SLC7A11, and GPX4 proteins in BPL rat breast tissue was detected by immunohistochemistry (IHC) and Western blot. ResultsCompared with the matrix group, the cell viability of MCF-10AT cells in the 1%, 2%, and 4% RUT groups was significantly reduced (P<0.05) in a concentration-dependent manner, with the 24-hour half inhibitory concentration (IC50) being 2.23%. Compared with the 4% RUT group, cell viability in the RUT + Fer-1 group was significantly increased (P<0.05). Compared with the matrix group, the colony formation rates of MCF-10AT cells in the 1%, 2%, and 4% RUT groups were significantly decreased (P<0.05). Compared with the 4% RUT group, the cell colony formation rate of the RUT + Fer-1 group was significantly increased (P<0.05). Compared with the matrix group, the levels of ROS and Fe2+ in the 1%, 2%, and 4% RUT groups were significantly increased (P<0.05), while GSH levels were significantly decreased (P<0.05), and MDA and lipid peroxidation levels were significantly increased (P<0.05). Compared with the 4% RUT group, ROS and Fe2+ levels in the RUT + Fer-1 group were significantly reduced (P<0.05), while GSH levels were significantly increased (P<0.05), and MDA and lipid peroxidation levels were significantly reduced (P<0.05). Compared with the matrix group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the 1%, 2%, and 4% RUT groups were significantly decreased (P<0.05). Compared with the 4% RUT group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the RUT + Fer-1 group were significantly increased (P<0.05). In the in vivo experiment, compared with the matrix group, the breast tissue histopathological status of the BPL rats in the RUC group was effectively improved, with less dilatation of the mammary ducts and more orderly duct arrangement. No pathological morphology indicative of invasive cancer was observed. Compared with the matrix group, Fe2+ and MDA levels in the mammary tissue of the RUC group were significantly increased (P<0.05). Compared with the matrix group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the mammary tissue of the RUC group were significantly reduced (P<0.05). ConclusionRUC may induce ferroptosis in BPL cells by inhibiting the Nrf2/SLC7A11/GPX4 signaling pathway, increasing Fe2+ accumulation, and promoting lipid peroxidation.
7.Correlation between the health literacy of reducing salt,oil and sugar on overweight and obesity among fourthgrade elementary school students and their parents
HAO Ying, LIU Danru, CHEN Xianxian, REN Jie, XU Cong, DU Fengjun, GUO Xiaolei, DONG Jing, MA Jixiang
Chinese Journal of School Health 2025;46(4):489-493
Objective:
To analyze the effects of health literacy on overweight and obesity among primary school students and their parents in terms of salt, oil and sugar reduction (referred to as the "three reductions"), so as to provide a theoretical basis for the development of obesity control measures.
Methods:
From March to April 2024, a total of 1 022 fourthgrade primary school students and 913 parents were surveyed in 24 classes in six counties in Shandong Province using multistage cluster random sampling, and physical measurements of primary school students were conducted. Pearsons correlation analysis and ordered multivariate Logistic regression were used to investigate the associations between health literacy of primary school students and their parents with overweight and obesity among children.
Results:
The detection rates of overweight and obesity primary school students in Shandong Province were 14.87% and 24.66%, respectively, with significant sex difference in obesity rate (29.46% for boys and 19.76% for girls) (χ2=12.93, P<0.01). In addition to students reducing oil scores, parental reducing salt,reducing oil,reducing sugar, comprehensive health literacy scores and students reducing salt,reducing sugar and comprehensive health literacy scores showed a negative relationship with students overweight and obesity (r=-0.10, -0.08, -0.07, -0.10, -0.04, -0.07, -0.03, P<0.05). The overweight and obesity rates among primary school students with high parental reducing salt,reducing oil,reducing sugar and composite health literacy scores were lower (OR=0.69, 0.69, 0.71, 0.63, P<0.05); and the overweight and obesity rate among students with high parental and low parental and high and low parental health literacy scores were lower (OR=0.68, 0.57, P<0.05).
Conclusion
Improving health literacy regarding "three reductions" for parents and children, especially parents, can effectively reduce the risk of childhood overweight and obesity.
8.Analysis of the layout and shielding effectiveness of medical accelerator vaults
Yajing SONG ; Zengyun NIU ; Yongzhong MA ; Shihua TAO ; Zechen FENG
Chinese Journal of Radiological Health 2025;34(2):204-208
Objective To analyze the layout and shielding effectiveness of medical accelerator vaults, and to provide a reference for the layout, shielding design, and optimization of protection of medical accelerator vaults. Methods Four medical accelerator radiotherapy vaults were selected. The layouts of these vaults were compared with the layout requirements in the radiation therapy protection standards. For each vault, the dose rates at four points of interest outside the shielding were calculated, including the primary shielding area, secondary shielding area, maze outer wall, and lateral shielding area. These values were then compared with the actual measurements obtained using a dose rate meter. Results All four vaults were located on the ground floor of the building and included a maze, with the auxiliary rooms all placed outside the treatment rooms. However, one vault was not located at one end of the building, and in another vault, the control room was exposed to direct irradiation of the useful beam. The calculated dose rates outside the primary shielding area ranged from 0.04 μSv/h to 0.62 μSv/h, while the measured values ranged from 0.10 μSv/h to 0.66 μSv/h, with the measured values being higher than the calculated ones. The calculated dose rates outside the secondary shielding area ranged from
9.Research progress on occupational health of interventional radiation workers
Junfang MA ; Fang ZHANG ; Wei CUI
Chinese Journal of Radiological Health 2025;34(2):297-302
With the rapid development of interventional radiology technology, the occupational health risk of interventional radiation workers has attracted increasing attention. This paper reviews recent studies on hematological changes, DNA damage and molecular-level changes, cancer, eye lens, and other health impairments among interventional radiation workers. The aim is to provide an overview of the current research progress as well as a scientific basis for the implementation of targeted protective measures to improve the occupational health level of interventional radiology workers.
10.Analysis of peripheral blood genetic material damage in children with vascular malformations after interventional procedures
Yuelong SHI ; Ying PANG ; Zhanchun GUO ; Ya MA ; Yingmin CHEN ; Xiaoshan WANG ; Rui CHEN
Chinese Journal of Radiological Health 2025;34(2):149-154
Objective To observe changes in genetic material in the peripheral blood of pediatric patients with vascular malformations after interventional procedures. Methods A total of 108 children with vascular malformations who underwent interventional procedures at Shandong University Affiliated Children’s Hospital between February 2021 and January 2024 were selected as the research subjects. Clinical data and peripheral venous blood samples before and after the interventional procedures were collected from the children. Two biological indicators, γ-H2AX and peripheral blood lymphocyte chromosomal aberration (CA), were used to determine the levels of genetic material damage in children with vascular malformations before and after interventional procedures. Results The median age of the children was 7 years and the median body weight was 27 kg. The median dose-area product (DAP) was 24.20 Gy·cm2 and the median DAP/kg was 1.04 Gy·cm2/kg. The incidence rates of both γ-H2AX foci and CA in children with vascular malformations significantly increased after the interventional procedures (Z = 5.924, P < 0.001; Z = 8.515, P < 0.001). The incidence of postoperative CA in 7 children were significantly higher than that in others, approaching or exceeding 4%. The incidence rates of postoperative γ-H2AX foci and CA in children with DAP/kg ≥ 1 Gy·cm2/kg were significantly higher than those in children with DAP/kg < 1 Gy·cm2/kg (U = 7.586, P = 0.031; U = 6.835, P = 0.009). No significant differences were observed in the incidence rates of postoperative γ-H2AX foci and CA among subgroups based on age, body weight, or surgical site. A positive correlation was observed between the difference in the incidence rates of γ-H2AX foci before and after the procedure and DAP/kg (R = 0.493, P = 0.027). Conclusion Ionizing radiation exposure during interventional procedures can increase peripheral blood genetic material damage levels in children with vascular malformations, and the damage levels show a correlation with the radiation dose, with some children being abnormally sensitive. Further research is needed to explore the influencing factors for genetic material damage in children with vascular malformations after interventional procedures, which is of great significance for reducing long-term cancer risks and achieving personalized treatment strategies.


Result Analysis
Print
Save
E-mail