1.Variation Tendency and Prediction of Colorectal Cancer Burden Among Chinese Population from 1990 to 2021
Tongzhou WANG ; Juanfang ZHU ; Jin ZHOU ; Pan ZHANG ; Qin TANG
Cancer Research on Prevention and Treatment 2025;52(4):319-323
Objective To examine the current status and trends of colorectal cancer (CRC) burden among Chinese residents from 1990 to 2021. Methods Data on CRC burden in China, Asia, and the global population from 1990 to 2021 were retrieved from the Global Burden of Disease database for descriptive analysis. An age-period-cohort model was employed to estimate the effects of age, period, and cohort on CRC mortality and to forecast changes in disease burden. Results In 2021, China’s age-standardized mortality rate, prevalence rate, and DALY rate for CRC were higher than global and Asian averages. The estimated annual percentage changes (EAPC) from 1990 to 2021 were −0.49% (95%CI: −0.55% to −0.43%) for mortality, 3.17% (95%CI: 3.03%−3.31%) for prevalence, and −0.62% (95%CI: −0.71% to −0.54%) for DALYs. Areas with high and medium-high sociodemographic indexes (SDIs) showed significant decreases in standardized mortality and DALY rates, but these rates remained higher compared with other regions. CRC mortality increased with age in the Chinese population, more prominently in males than in females. Using the 2002–2006 period as a reference (RR=1), the period effect on CRC mortality risk for women was higher than that for men until 2004, after which it declined considerably. With the 1957 birth cohort as a reference (RR=1), CRC mortality risk generally decreased across subsequent birth cohorts. Predictions indicate that by 2035, the standardized prevalence rate will be 267.21 per 100 000, and the standardized mortality rate will be 12.29 per 100 000. Conclusion From 1990 to 2021, China’s age-standardized CRC mortality and DALY rates have decreased, while the standardized prevalence rate has increased. These findings suggest the government to establish a comprehensive multi-level CRC prevention network.
2.Acupuncture Treatment Strategies for Crohn's Disease Based on the Principle of "Shaoyang as the Pivot"
Chunhui BAO ; Jin HUANG ; Xinyi ZHU ; Zhou HAO ; Luyi WU ; Huirong LIU ; Huangan WU
Journal of Traditional Chinese Medicine 2025;66(10):1017-1022
The shaoyang meridian is an important pivot between the internal organs and meridians system, with the functions of regulating qi and blood, balancing yin and yang, and coordinating the ascending and descending movement of qi. Dysfunction of the shaoyang pivot can lead to spleen and kidney deficiency, impaired liver and gallbladder qi regulation, and stagnation of qi and blood. It is believed that the onset and progression of Crohn's disease are closely related to shaoyang pivot dysfunction, with the core pathogenesis characterized by shaoyang disharmony, spleen deficiency, dampness retention, and blood stasis. Based on this understanding, the treatment principle centers on harmonizing the shaoyang pivot, supplemented by methods such as warming and nourishing the spleen and stomach, tonifying shaoyang, and soothing the liver and benefiting the gallbladder. Acupuncture is employed to target key acupoints along the shaoyang meridian to restore its regulatory functions, improve spleen and stomach transformation and transportation, facilitate liver and gallbladder qi flow, and promote the circulation of qi and blood. This provides a practical therapeutic approach for acupuncture-based treatment of Crohn's disease.
3.Promotion of Angiogenesis by Colorectal Cancer Cell LoVo Derived-exosomes Through Transferring pEGFR
Ya-Jie CHENG ; Xue-Tong ZHOU ; Rui WANG ; Jin FANG
Progress in Biochemistry and Biophysics 2025;52(5):1229-1240
ObjectiveThis study sought to investigate the impact of exosomes derived from LoVo cells (LoVo-Exos) in colorectal cancer (CRC) on tumor angiogenesis, as well as to elucidate the potential molecular mechanisms underlying their pro-angiogenic effects. MethodsLoVo-Exos were isolated via ultracentrifugation, and their internalization into recipient human umbilical vein endothelial cells (HUVECs) was visualized using confocal microscopy. The influence of LoVo-Exos on angiogenesis was assessed through an in vitro tube formation assay. Additionally, the pro-angiogenic effects of LoVo-Exos were evaluated in vivo using a matrix gluing assay in mice. To investigate the molecular mechanisms through which LoVo-Exos facilitate angiogenesis, Western blot analysis was employed to examine the transfer of pEGFR by LoVo-Exos into recipient cells. Both Western blot and ELISA were utilized to assess the expression levels of key signaling proteins within the EGFR-ERK pathway, as well as the expression of downstream angiogenic core molecules. Furthermore, the impact of EGFR knockdown and ERK inhibitor treatment on angiogenesis was evaluated, with subsequent analysis of the expression of downstream angiogenic core molecules following these interventions. ResultsConfocal microscopy demonstrated the internalization of LoVo-Exos into HUVECs. In vitro angiogenesis assays further indicated that LoVo-Exos significantly enhanced the formation of tubular structures in HUVECs. Additionally, macroscopic examination of subcutaneous matrix plug formation in mice revealed a substantial increase in vascular-like structures within the matrix plugs following the administration of LoVo-Exos, compared to the PBS control group. Hematoxylin and eosin (HE) staining revealed the presence of erythrocyte-filled microvessels within the matrix plugs combined with LoVo-Exos. Furthermore, immunohistochemical analysis demonstrated the expression of the endothelial cell marker CD31 in these matrix plugs. The presence of CD31-positive cells in the LoVo-Exos-treated matrix plugs was associated with a significant enhancement in the formation of luminal structures. These findings suggest that LoVo-Exos facilitate the in vivo development of vascular-like structures. Subsequent investigations demonstrated that LoVo-Exos facilitated the delivery of pEGFR to HUVEC, thereby enhancing angiogenesis. Conversely, LoVo-Exos with EGFR knockdown exhibited a diminished capacity to promote angiogenesis, an effect that was further attenuated by the ERK phosphorylation inhibitor U0126. Western blot analysis assessing the activation of the EGFR-ERK signaling pathway in HUVEC indicated that LoVo-Exos augmented angiogenesis through the activation of this pathway. Furthermore, analysis of the impact of LoVo-Exos on the expression of downstream angiogenic core molecules revealed an increase in interleukin-8 (IL-8) secretion in HUVEC. The enhancement observed was diminished in LoVo-Exos following EGFR knockdown, and this reduction was counteracted by the ERK phosphorylation inhibitor U0126. ConclusionThe underlying mechanism may involve the delivery of pEGFR in LoVo-Exos to HUVECs, leading to increased IL-8 secretion via the EGFR-ERK signaling pathway, thereby enhancing the angiogenic potential of HUVECs. This finding may offer new insights into the mechanisms underlying cancer metastasis.
4.Disease Burden of Malignant Tumors Among Residents of Kunshan City, Jiangsu Province, 2006–2021
Zhouquan FAN ; Wenbin HU ; Yixu JIN ; Lyulin LU ; Jie ZHOU ; Lan TONG ; Wei QIN
Cancer Research on Prevention and Treatment 2025;52(5):411-417
Objective To analyze the burden of disease of malignant tumors in Kunshan City from 2006 to 2021. Methods The global burden of disease research methodology was applied. The indicators of cancer incidence, mortality, and disability-adjusted life years (DALYs) in Kunshan were calculated using the data from the Tumor Registry System and Death Registry System in Kunshan. The changes in cancer were compared. Results In 2021, the number of incidences and deaths and the DALYs of cancer were
5.Effect of Shenkang Injection on Podocyte Apoptosis and GRP78/CHOP Signaling Pathway in db/db Mice with Diabetic Kidney Disease Based on Endoplasmic Reticulum Stress
Yanmo CAI ; Sitong WANG ; Xin ZHOU ; Ge JIN ; Kaidong ZHOU ; Yunhua LIU ; Fengfeng ZHANG ; Xinxue ZHANG ; Zongjiang ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):81-90
ObjectiveTo investigate the mechanism of Shenkang injection in delaying diabetic kidney disease by regulating endoplasmic reticulum stress and attenuating podocyte apoptosis through the Glucose regulated protein 78 ( GRP78 ) / transcription factor C / EBP homologous protein ( CHOP ) signaling pathway (GRP78/CHOP) signaling pathway. MethodsFor the animal experiment, 10 12-week-old db/m mice were selected as a normal group, and 30 12-week-old db/db mice were randomly divided into a model group, a Shenkang injection group (15.6 mL·kg-1), and a dapagliflozin group (1.6 mg·kg-1). To observe the general condition of mice, fasting blood glucose, urinary albumin/urine creatinine (ACR), and 24 h urine protein quantification were detected in each group before drug administration. After 12 weeks of drug treatment, mice were tested for fasting blood glucose, total cholesterol (TC), triglyceride (TG), low-density cholesterol (LDL), ACR, 24 h urine protein quantification, blood creatinine (SCr), and blood urea (UREA). Hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and transmission electron microscopy were used to observe the pathologic morphology in renal tissue. Immunohistochemistry was used to detect the expressions of nephroprotective marker protein (Nephrin), glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax) in renal tissue. Western blot was used to detect the expressions of GRP78, CHOP, Bcl-2, Bax, and Nephrin proteins, and Real-time polymerase chain reaction (Real-time PCR) was employed to detect the expressions of Nephrin, GRP78, CHOP, Bcl-2, and Bax mRNAs in renal tissue. ResultsBefore drug administration, compared with those in the normal group, the body mass of db/db mice was significantly increased, and blood glucose, 24 h urine protein quantification, and ACR were significantly elevated in the Shenkang injection group and Dapagliflozin group (P<0.01). After 12 weeks of administration, compared with those in the model group, the general state of mice in the Shenkang injection group was significantly improved, and the body mass was decreased. The blood glucose was significantly reduced (P<0.01), and blood lipids TC, TG, and LDL were significantly decreased (P<0.05, P<0.01). The 24 h urine protein quantification and ACR were significantly decreased (P<0.05), and SCr and UREA were significantly reduced (P<0.01). Compared with those of the model group, the pathologic results of the Shenkang injection group showed that proliferation of mesangial cells, reduction of inflammatory cell infiltration, and alleviation of renal tubular vacuolization and podocyte damage were observed in renal tissue of mice. Electron microscopy showed that fusion of the pedicle protruding and thickening of the basement membrane were reduced. Immunohistochemistry results showed that the expressions of GRP78, CHOP, and Bax proteins were significantly reduced (P<0.01), and the expressions of Nephrin and Bcl-2 proteins were significantly increased (P<0.01) in renal tissue of the Shenkang injection group. Western blot results showed that the expressions of Nephrin and Bcl-2 in the Shenkang injection group were significantly increased (P<0.05, P<0.01), and the expressions of GRP78, CHOP, and Bax proteins were significantly decreased (P<0.05, P<0.01). Real-time PCR results showed that the expressions of GRP78, CHOP, and Bax mRNAs were down regulated in the Shenkang injection group (P<0.01), and the expressions of Nephrin and Bcl-2 mRNAs were up regulated (P<0.01). ConclusionShenkang injection inhibits endoplasmic reticulum stress response and podocyte apoptosis by regulating the GRP78/CHOP signaling pathway, which in turn ensures the integrity of glomerular filtration barrier, reduces the occurrence of proteinuria, improves renal function, and thus delays the progression of diabetic kidney disease.
6.Effect of Shenkang Injection on Podocyte Apoptosis and GRP78/CHOP Signaling Pathway in db/db Mice with Diabetic Kidney Disease Based on Endoplasmic Reticulum Stress
Yanmo CAI ; Sitong WANG ; Xin ZHOU ; Ge JIN ; Kaidong ZHOU ; Yunhua LIU ; Fengfeng ZHANG ; Xinxue ZHANG ; Zongjiang ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):81-90
ObjectiveTo investigate the mechanism of Shenkang injection in delaying diabetic kidney disease by regulating endoplasmic reticulum stress and attenuating podocyte apoptosis through the Glucose regulated protein 78 ( GRP78 ) / transcription factor C / EBP homologous protein ( CHOP ) signaling pathway (GRP78/CHOP) signaling pathway. MethodsFor the animal experiment, 10 12-week-old db/m mice were selected as a normal group, and 30 12-week-old db/db mice were randomly divided into a model group, a Shenkang injection group (15.6 mL·kg-1), and a dapagliflozin group (1.6 mg·kg-1). To observe the general condition of mice, fasting blood glucose, urinary albumin/urine creatinine (ACR), and 24 h urine protein quantification were detected in each group before drug administration. After 12 weeks of drug treatment, mice were tested for fasting blood glucose, total cholesterol (TC), triglyceride (TG), low-density cholesterol (LDL), ACR, 24 h urine protein quantification, blood creatinine (SCr), and blood urea (UREA). Hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and transmission electron microscopy were used to observe the pathologic morphology in renal tissue. Immunohistochemistry was used to detect the expressions of nephroprotective marker protein (Nephrin), glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax) in renal tissue. Western blot was used to detect the expressions of GRP78, CHOP, Bcl-2, Bax, and Nephrin proteins, and Real-time polymerase chain reaction (Real-time PCR) was employed to detect the expressions of Nephrin, GRP78, CHOP, Bcl-2, and Bax mRNAs in renal tissue. ResultsBefore drug administration, compared with those in the normal group, the body mass of db/db mice was significantly increased, and blood glucose, 24 h urine protein quantification, and ACR were significantly elevated in the Shenkang injection group and Dapagliflozin group (P<0.01). After 12 weeks of administration, compared with those in the model group, the general state of mice in the Shenkang injection group was significantly improved, and the body mass was decreased. The blood glucose was significantly reduced (P<0.01), and blood lipids TC, TG, and LDL were significantly decreased (P<0.05, P<0.01). The 24 h urine protein quantification and ACR were significantly decreased (P<0.05), and SCr and UREA were significantly reduced (P<0.01). Compared with those of the model group, the pathologic results of the Shenkang injection group showed that proliferation of mesangial cells, reduction of inflammatory cell infiltration, and alleviation of renal tubular vacuolization and podocyte damage were observed in renal tissue of mice. Electron microscopy showed that fusion of the pedicle protruding and thickening of the basement membrane were reduced. Immunohistochemistry results showed that the expressions of GRP78, CHOP, and Bax proteins were significantly reduced (P<0.01), and the expressions of Nephrin and Bcl-2 proteins were significantly increased (P<0.01) in renal tissue of the Shenkang injection group. Western blot results showed that the expressions of Nephrin and Bcl-2 in the Shenkang injection group were significantly increased (P<0.05, P<0.01), and the expressions of GRP78, CHOP, and Bax proteins were significantly decreased (P<0.05, P<0.01). Real-time PCR results showed that the expressions of GRP78, CHOP, and Bax mRNAs were down regulated in the Shenkang injection group (P<0.01), and the expressions of Nephrin and Bcl-2 mRNAs were up regulated (P<0.01). ConclusionShenkang injection inhibits endoplasmic reticulum stress response and podocyte apoptosis by regulating the GRP78/CHOP signaling pathway, which in turn ensures the integrity of glomerular filtration barrier, reduces the occurrence of proteinuria, improves renal function, and thus delays the progression of diabetic kidney disease.
7.Research on the Correlation between Balance Function and Core Muscles in Patients With Adolescent Idiopathic Scoliosis
Si-Jia LI ; Qing YUE ; Qian-Jin LIU ; Yan-Hua LIANG ; Tian-Tian ZHOU ; Xiao-Song LI ; Tian-Yang FENG ; Tong ZHANG
Neurospine 2025;22(1):264-275
Objective:
This study aimed to explore the correlation between balance function and core muscle activation in patients with adolescent idiopathic scoliosis (AIS), compared to healthy individuals.
Methods:
A total of 24 AIS patients and 25 healthy controls were recruited. The limits of stability (LOS) test were conducted to assess balance function, while surface electromyography was used to measure the activity of core muscles, including the internal oblique, external oblique, and multifidus. Diaphragm thickness was measured using ultrasound during different postural tasks. Center of pressure (COP) displacement and trunk inclination distance were also recorded during the LOS test.
Results:
AIS patients showed significantly greater activation of superficial core muscles, such as the internal and external oblique muscles, compared to the control group (p < 0.05). Diaphragm activation was lower in AIS patients during balance tasks (p < 0.01). Although no significant difference was observed in COP displacement between the groups, trunk inclination was significantly greater in the AIS group during certain tasks (p < 0.05).
Conclusion
These findings suggest distinct postural control patterns in AIS patients, highlighting the importance of targeted interventions to improve balance and core muscle function in this population.
8.Cost-effectiveness of Fractional Flow Reserve Versus Intravascular Ultrasound to Guide Percutaneous Coronary Intervention: Results From the FLAVOUR Study
Doyeon HWANG ; Hea-Lim KIM ; Jane KO ; HyunJin CHOI ; Hanna JEONG ; Sun-ae JANG ; Xinyang HU ; Jeehoon KANG ; Jinlong ZHANG ; Jun JIANG ; Joo-Yong HAHN ; Chang-Wook NAM ; Joon-Hyung DOH ; Bong-Ki LEE ; Weon KIM ; Jinyu HUANG ; Fan JIANG ; Hao ZHOU ; Peng CHEN ; Lijiang TANG ; Wenbing JIANG ; Xiaomin CHEN ; Wenming HE ; Sung Gyun AHN ; Ung KIM ; You-Jeong KI ; Eun-Seok SHIN ; Hyo-Soo KIM ; Seung-Jea TAHK ; JianAn WANG ; Tae-Jin LEE ; Bon-Kwon KOO ;
Korean Circulation Journal 2025;55(1):34-46
Background and Objectives:
The Fractional Flow Reserve and Intravascular UltrasoundGuided Intervention Strategy for Clinical Outcomes in Patients with Intermediate Stenosis (FLAVOUR) trial demonstrated non-inferiority of fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) compared with intravascular ultrasound (IVUS)-guided PCI. We sought to investigate the cost-effectiveness of FFR-guided PCI compared to IVUS-guided PCI in Korea.
Methods:
A 2-part cost-effectiveness model, composed of a short-term decision tree model and a long-term Markov model, was developed for patients who underwent PCI to treat intermediate stenosis (40% to 70% stenosis by visual estimation on coronary angiography).The lifetime healthcare costs and quality-adjusted life-years (QALYs) were estimated from the healthcare system perspective. Transition probabilities were mainly referred from the FLAVOUR trial, and healthcare costs were mainly obtained through analysis of Korean National Health Insurance claims data. Health utilities were mainly obtained from the Seattle Angina Questionnaire responses of FLAVOUR trial participants mapped to EQ-5D.
Results:
From the Korean healthcare system perspective, the base-case analysis showed that FFR-guided PCI was 2,451 U.S. dollar lower in lifetime healthcare costs and 0.178 higher in QALYs compared to IVUS-guided PCI. FFR-guided PCI remained more likely to be cost-effective over a wide range of willingness-to-pay thresholds in the probabilistic sensitivity analysis.
Conclusions
Based on the results from the FLAVOUR trial, FFR-guided PCI is projected to decrease lifetime healthcare costs and increase QALYs compared with IVUS-guided PCI in intermediate coronary lesion, and it is a dominant strategy in Korea.
9.YAK577 Attenuates Cardiac Remodeling and Fibrosis in Isoproterenol-Infused Heart Failure Mice by Downregulating MMP12
Hongyan ZHOU ; Hae Jin KEE ; Le WAN ; Yodita ASFAHA ; Fabian FISCHER ; Matthias U KASSACK ; Thomas KURZ ; Seong Hoon KIM ; Seung-Jung KEE ; Young Joon HONG ; Myung Ho JEONG
Korean Circulation Journal 2025;55(3):231-247
Background and Objectives:
Heart failure is a potentially fatal event caused by diverse cardiovascular diseases, leading to high morbidity and mortality. Histone deacetylase (HDAC) inhibitors positively influence cardiac hypertrophy, fibrosis, hypertension, myocardial infarction, and heart failure, causing some side effects. We aimed to investigate the effect of the novel HDAC inhibitor YAK577 on the heart failure mouse model and its underlying mechanism.
Methods:
New hydroxamic acid YAK577 was prepared via methyl-2,3-diphenylpropanoate synthesis using carboxylic acids. We used a micro-osmotic pump, including isoproterenol (ISO; 80 mg/kg/day), to induce a heart failure with reduced ejection fraction. Cardiac hypertrophy was assessed by heart weight to body weight ratio and cross-sectional area.The left ventricular (LV) function was assessed by echocardiography. Fibrosis was evaluated using picrosirius red staining. Overexpression and knockdown experiments were performed to investigate the association between HDAC8 and matrix metalloproteinase 12 (MMP12).
Results:
YAK577 treatment restored ISO-induced reduction in LV fractional shortening and ejection fraction (n=9–11). YAK577 significantly downregulated cardiac hypertrophy marker genes (natriuretic peptide B, NPPB, and myosin heavy chain 7, MYH7) and cardiomyocyte size in vitro but not in vivo. YAK577 ameliorated cardiac fibrosis and fibrosis-related genes in vivo and in vitro. Additionally, YAK577 reduced elevated HDAC8 and MMP12 mRNA and protein expressions in ISO-infused mice, H9c2 cells, and rat neonatal cardiomyocytes.HDAC8 overexpression stimulated MMP12 and NPPB mRNA levels, while HDAC8 knockdown downregulated these genes.
Conclusions
YAK577 acts as a novel heart failure drug through the HDAC8/MMP12 pathway.
10.Non-canonical Function of Prolyl Hydroxylase Domain 2in Breast Cancer Cell Growth and Progression: Role of Peptidyl-prolyl Cis-trans Isomerase NIMA-interacting 1
Yanymee N. GUILLEN-QUISPE ; Su-Jung KIM ; Soma SAEIDI ; Gyo-Jin CHOI ; Chaithanya CHELAKKOT ; Tianchi ZHOU ; Sang-Beom BANG ; Tae-Won KIM ; Young Kee SHIN ; Young-Joon SURH
Journal of Cancer Prevention 2025;30(1):56-56

Result Analysis
Print
Save
E-mail