1.Connotation and Application of WU Jutong's Theory of "Treating All Bi (痹) Diseases through Taiyin"
Liang MENG ; Shuai KANG ; Quan JIN ; Qiancheng WEI
Journal of Traditional Chinese Medicine 2025;66(1):102-108
The Medical Cases of WU Jutong (《吴鞠通医案》) proposes the principle of "treating all Bi (痹) diseases through taiyin", which forms the basis for analyzing WU Jutong's understanding of the causes, mechanisms, and treatments of Bi (痹) diseases, providing a reference for clinical diagnosis and treatment. Through an interpretation of the phrase "treating all Bi (痹) diseases through taiyin", it is suggested that Bi (痹) diseases is primarily caused by dampness, necessitating a focus on spleen and lung in treatment. WU emphasized four main causes of Bi (痹) diseases (wind, cold, dampness, and heat), with dampness being the predominant factor. The disease location is initially in lung, for which external dampness invades lung first, and internal dampness obstructs the source of water metabolism, impeding lung qi and qi failing to disperse, then dampness further accumulates in the joints, leading to Bi (痹) diseases. WU Jutong proposed the modified Mufangji Decoction (木防己汤) as the foundational prescription for treating Bi (痹) diseases. By comparing the similarities and differences between the modified and original Mufangji Decoction, and analyzing the adjustments in herbal prescriptions, the clinical characteristic of "treating all Bi (痹) diseases through taiyin" is further substantiated.
2.Mechanism of Shenkang injection in treatment of renal fibrosis based on bioinformatics and in vitro experimental verification
Gao-Quan MENG ; Ming-Liang ZHANG ; Xiao-Fei CHEN ; Xiao-Yan WANG ; Wei-Xia LI ; Dai ZHANG ; Lu JIANG ; Ming-Ge LI ; Xiao-Shuai ZHANG ; Wei-Ting MENG ; Bing HAN ; Jin-Fa TANG
Chinese Pharmacological Bulletin 2024;40(10):1953-1962
Aim To explore the mechanism and mate-rial basis of Shenkang injection(SKI)in the treatment of renal fibrosis(RF)by bioinformatics and in vitro experiments.Methods The differentially expressed genes of RF were screened by GEO database.With the help of CMAP database,based on the similarity princi-ple of gene expression profile,the drugs that regulated RF were repositioned,and then the components of SKI potential treatment RF were screened by molecular fin-gerprint similarity analysis.At the same time,the core targets and pathways of SKI regulating RF were predic-ted based on network pharmacology.Finally,it was verified by molecular docking and cell experiments.Results Based on the GEO database,two RF-related data sets were screened,and CMAP was relocated to three common RF therapeutic drugs(saracatinib,da-satinib,pp-2).Molecular fingerprint similarity analysis showed that RF therapeutic drugs had high structural similarity with five SKI components such as salvianolic acid B and hydroxysafflor yellow A.Molecular docking results showed that salvianolic acid B,hydroxysafflor yellow A and other components had good binding abili-ty with MMP1 and MMP13,which were the core targets of SKI-regulated potential treatment of RF.Network pharmacology analysis suggested that the core targets of SKI were mainly enriched in signaling pathways such as Relaxin and AGE-RAGE.Cell experiments showed that SKI could significantly reduce the mRNA expres-sion levels of AGER,NFKB1,COL1A1,SERPINE1,VEGFC in AGE-RAGE signaling pathway and MMP1 and MMP13 in Relaxin signaling pathway in RF model cells,and significantly increase the mRNA expression level of RXFP1.Conclusions SKI can play a role in the treatment of RF by regulating Relaxin and AGE-RAGE signaling pathways,and its material basis may be salvianolic acid B,hydroxysafflor yellow A and other components.
3.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
4.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
5.Expert Consensus on Clinical Diseases Responding Specifically to Traditional Chinese Medicine:Fibromyalgia Syndrome
Juan JIAO ; Jinyang TANG ; Xiujuan HOU ; Mengtao LI ; Dongfeng LIANG ; Yuhua WANG ; Weixia JING ; Guangtao LI ; Qin ZHANG ; Yongfeng ZHANG ; Guangyu LI ; Qian WANG ; Yang YANG ; Jin HUO ; Mei MO ; Jihua GUO ; Xiaoxiao ZHANG ; Quan JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(1):216-222
Fibromyalgia syndrome (FMS) is a refractory, chronic non-articular rheumatic disease characterized by widespread pain throughout the body, for which there are no satisfactory therapeutic drugs or options. There are rich Chinese medical therapies, and some non-drug therapies, such as acupuncture, Tai Chi, and Ba-Duan-Jin, have shown satisfactory efficacy and safety and definite advantages of simultaneously adjusting mind and body. FMS is taken as a disease responding specifically to traditional Chinese medicine (TCM) by the National Administration of Traditional Chinese Medicine in 2018. In order to clarify the research progress in FMS and the clinical advantages of TCM/integrated Chinese and Western medicine, the China Academy of Chinese Medicine organized a seminar for nearly 20 experts in Chinese and Western medicine, including rheumatology, psychology, acupuncture and moxibustion, and encephalopathy, with the topic of difficulties in clinical diagnosis and treatment of FMS and advantages of TCM and Western medicine. The recommendations were reached on the difficulties in early diagnosis and solutions of FMS, mitigation of common non-specific symptoms, preferential analgesic therapy, TCM pathogenesis and treatment advantages, and direction of treatment with integrated Chinese and Western medicine. FMS is currently facing the triple dilemma of low early correct diagnosis, poor patient participation, and unsatisfactory benefit from pure Western medicine treatment. To solve the above problems, this paper suggests that rheumatologists should serve as the main diagnostic force of this disease, and they should improve patient participation in treatment decision-making, implement exercise therapy, and fully utilize the holistic and multidimensional features of TCM, which is effective in alleviating pain, improving mood, and decreasing adverse events. In addition, it is suggested that FMS treatment should rely on both TCM and Western medicine and adopt multidisciplinary joint treatment, which is expected to improve the standard of diagnosis and treatment of FMS in China.
6.Monotropein Induced Apoptosis and Suppressed Cell Cycle Progression in Colorectal Cancer Cells.
Quan GAO ; Lin LI ; Qi-Man ZHANG ; Qin-Song SHENG ; Ji-Liang ZHANG ; Li-Jun JIN ; Rui-Yan SHANG
Chinese journal of integrative medicine 2024;30(1):25-33
OBJECTIVE:
To determine whether monotropein has an anticancer effect and explore its potential mechanisms against colorectal cancer (CRC) through network pharmacology and molecular docking combined with experimental verification.
METHODS:
Network pharmacology and molecular docking were used to predict potential targets of monotropein against CRC. Cell counting kit assay, plate monoclonal assay and microscopic observation were used to investigate the antiproliferative effects of monotropein on CRC cells HCT116, HT29 and LoVo. Flow cytometry and scratch assay were used to analyze apoptosis and cell cycle, as well as cell migration, respectively in HCT116, HT29, and LoVo cells. Western blotting was used to detect the expression of proteins related to apoptosis, cell cycle, and cell migration, and the expression of proteins key to the Akt pathway.
RESULTS:
The Gene Ontology and Reactome enrichment analyses indicated that the anticancer potential of monotropein against CRC might be involved in multiple cancer-related signaling pathways. Among these pathways, RAC-beta serine/threonine-protein kinase (Akt1, Akt2), cyclin-dependent kinase 6 (CDK6), matrix metalloproteinase-9 (MMP9), epidermal growth factor receptor (EGFR), cell division control protein 42 homolog (CDC42) were shown as the potential anticancer targets of monotropein against CRC. Molecular docking suggested that monotropein may interact with the 6 targets (Akt1, Akt2, CDK6, MMP9, EGFR, CDC42). Subsequently, cell activity of HCT116, HT29 and LoVo cell lines were significantly suppressed by monotropein (P<0.05). Furthermore, our research revealed that monotropein induced cell apoptosis by inhibiting Bcl-2 and increasing Bax, induced G1-S cycle arrest in colorectal cancer by decreasing the expressions of CyclinD1, CDK4 and CDK6, inhibited cell migration by suppressing the expressions of CDC42 and MMP9 (P<0.05), and might play an anticancer role through Akt signaling pathway.
CONCLUSION
Monotropein exerts its antitumor effects primarily by arresting the cell cycle, causing cell apoptosis, and inhibiting cell migration. This indicates a high potential for developing novel medication for treating CRC.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cell Proliferation
;
Matrix Metalloproteinase 9
;
Molecular Docking Simulation
;
Cell Cycle
;
ErbB Receptors
;
Apoptosis
;
Colorectal Neoplasms/pathology*
;
Cell Line, Tumor
7.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
8.Quercetin Alleviates Lipopolysaccharide-Induced Cardiac Inflammation via Inhibiting Autophagy and Programmed Cell Death
Hai Jin YU ; Liang Guo HU ; Quan Xiao GUO ; Bin Hua CAO ; Fei Zhao XIA ; Buhe AMIN
Biomedical and Environmental Sciences 2024;37(1):54-70
Objective The aim of this study is to explore the potential modulatory role of quercetin against Endotoxin or lipopolysaccharide (LPS) induced septic cardiac dysfunction.Methods Specific pathogen-free chicken embryos (n = 120) were allocated untreated control, phosphate buffer solution (PBS) vehicle, PBS with ethanol vehicle, LPS (500 ng/egg), LPS with quercetin treatment (10, 20, or 40 nmol/egg, respectively), Quercetin groups (10, 20, or 40 nmol/egg). Fifteen-day-old embryonated eggs were inoculated with abovementioned solutions via the allantoic cavity. At embryonic day 19, the hearts of the embryos were collected for histopathological examination, RNA extraction, real-time polymerase chain reaction, immunohistochemical investigations, and Western blotting.Results They demonstrated that the heart presented inflammatory responses after LPS induction. The LPS-induced higher mRNA expressions of inflammation-related factors (TLR4, TNFα, MYD88, NF-κB1, IFNγ, IL-1β, IL-8, IL-6, IL-10, p38, MMP3, and MMP9) were blocked by quercetin with three dosages. Quercetin significantly decreased immunopositivity to TLR4 and MMP9 in the treatment group when compared with the LPS group. Quercetin significantly decreased protein expressions of TLR4, IFNγ, MMP3, and MMP9 when compared with the LPS group. Quercetin treatment prevented LPS-induced increase in the mRNA expression of Claudin 1 and ZO-1, and significantly decreased protein expression of claudin 1 when compared with the LPS group. Quercetin significantly downregulated autophagy-related gene expressions (PPARα, SGLT1, APOA4, AMPKα1, AMPKα2, ATG5, ATG7, Beclin-1, and LC3B) and programmed cell death (Fas, Bcl-2, CASP1, CASP12, CASP3, and RIPK1) after LPS induction. Quercetin significantly decreased immunopositivity to APOA4, AMPKα2, and LC3-II/LC3-I in the treatment group when compared with the LPS group. Quercetin significantly decreased protein expressions of AMPKα1, LC3-I, and LC3-II. Quercetin significantly decreased the protein expression to CASP1 and CASP3 by immunohistochemical investigation or Western blotting in treatment group when compared with LPS group.Conclusion Quercetin alleviates cardiac inflammation induced by LPS through modulating autophagy, programmed cell death, and myocardiocytes permeability.
9.Effects of early enteral nutrition intervention on systemic inflammation and intestinal injury through NF-κB pathway in rats with acute pancreatitis
Di JIN ; Jingwen QUAN ; Mengliu JIANG ; Min MURONG ; Weifen LIANG ; Guizhen XIAO
Chinese Journal of Endocrine Surgery 2023;17(3):261-267
Objective:To investigate the effects of early enteral nutrition intervention on systemic inflammation and intestinal injury in rats with acute pancreatitis and its mechanism.Method:Rat acute pancreatitis model was established. The rats were divided into sham surgery groups, model group, 12 h nutrition support group, 24 h nutrition support group, 48 h nutrition support group, and 48 h nutrition support group +PMA group according to the random number chart method, with 10 rats in each group. After laparotomy, the rats in sham operation group were closed after gently turning the pancreas. The sham operation group and model group were injected with the same amount of physiological salt. Nutritional support group for 12 h, nutritional support group for 24 h and nutritional support group for 48 h were given enteral nutrition support for 12, 24 and 48 h, respectively. Nutritional support group for 48 h +PMA group, intraperitoneal injection of 5 mg/kg NF-κB signaling pathway activator PMA was given after modeling, and nutritional support was given for 48 h. The contents of lipase, amylase and creatinine in serum of each group were detected by automatic biochemical analyzer. The serum levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10) and D-lactic acid were detected by enzyme-linked immunosorbent assay (ELISA). The content of diamine oxidase (DAO) was detected by colorimetry. Hematoxylin-eosin (HE) staining was used to detect the pathological changes of intestinal mucosa. Western blot was used to detect the expression of NF-κB pathway-related proteins in pancreatic tissue of rats in each group.Results:(1) Lipase, amylase and creatinine in sham operation group, model group, 12 h nutrition support group, 24 h nutrition support group and 48 h nutrition support group were (4.37±0.61) vs (12.021±1.00) vs (8.77±0.62) vs (6.88±0.63) vs (5.20±0.41) U/ml, (1674.03±172.24) vs (4356.30±229.38) vs (3676.11±382.43) vs (2990.06±251.93) vs (1919.75±179.40) U/L, (32.12±3.37) vs (91.73±9.76) vs (72.38±6.83) vs (53.72±5.98) vs (41.82±4.00) U/L. Compared with sham operation group, the contents of serum lipase, amylase and creatinine in model group were significantly increased. Compared with model group, the contents of lipase, amylase and creatinine were significantly decreased after 12, 24 and 48 h of nutritional support, and were time-dependent ( P<0.05). (2) The levels of IL-6, IL-1β, TNF-α and IL-10 were (40.26±3.93) vs (123.34±13.19) pg/ml in sham operation group, model group, 12 h nutritional support group, 24 h nutritional support group and 48 h nutritional support group, respectively vs (108.97±12.70) vs (77.36±6.75) vs (49.18±4.97) pg/ml, (77.53±9.95) vs (316.36±23.76) vs (254.79±13.96) vs (177.92±17.20) vs (119.19±13.17) pg/ml, (62.94±5.39) vs (353.16±28.03) vs (275.87±22.11) vs (198.78±24.33) vs (94.60±9.41) pg/ml, (41.21±4.29) vs (6.92±1.01) vs (10.76±0.66) vs (21.24±1.64) vs (35.33±1.69) pg/ml. Compared with sham operation group, the contents of serum inflammatory cytokines IL-6, IL-1β and TNF-α in model group were significantly increased, while the content of IL-10 was significantly decreased. Compared with model group, the contents of IL-6, IL-1β and TNF-α were significantly decreased after 12, 24 and 48 h of nutritional support, while the contents of IL-10 were significantly increased in a time-dependent manner ( P<0.05). (3) The intestinal histopathological scores, DAO and D-lactic acid of sham operation group, model group, 12 h nutritional support group, 24 h nutritional support group and 48 h nutritional support group were (0.00±0.00) vs (4.20±0.60) vs (3.00±0.45) points, respectively vs (1.90±0.54) vs (1.30±0.64) points, (4.92±0.42) vs (14.95±1.20) vs (11.87±1.13) vs (9.02±0.53) vs (6.30±0.59) U/L, (2.39±0.22) vs (6.92±0.46) vs (5.21±0.28) vs (3.64±0.39) vs (2.95±0.15) nmol/ml. Compared with sham operation group, intestinal histopathological scores, DAO and D-lactic acid levels were significantly increased in model group. Compared with model group, intestinal histopathological scores, DAO and D-lactic acid levels were significantly decreased after 12, 24 and 48 h of nutritional support ( P<0.05). (4) The protein expressions of NF-κB p65 and p-IκBα were (0.23±0.03) vs (0.94±0.10) vs (0.75±0.06) vs (0.62±0.06) in sham operation group, model group, 12 h nutrition support group, 24 h nutrition support group and 48 h nutrition support group, respectively. vs (0.41±0.06), (1.06±0.12) vs (0.25±0.04) vs (0.47±0.03) vs (0.62±0.08) vs (0.85±0.08). Compared with sham operation group, NF-κB p65 protein level in model group was significantly increased, while p-IκBα protein level was significantly decreased. Compared with model group, the NF-κB p65 protein level was significantly decreased after 12, 24 and 48 h of nutritional support, while the P-iκBα protein was significantly increased ( P<0.05). (5) NF-κB p65, p-IκBα, IκBα, IL-6, IL-1β, TNF-α, IL-10, lipase, amylase and creatinine were (0.41±0.06) vs (0.82±0.06) in the 48 h group and the 48 h +PMA group, respectively. (0.85±0.08) vs (0.37±0.02), (1.05±0.11) vs (1.10±0.14), (49.18±4.97) vs (105.68±10.69) pg/ml, (119.19±13.17) vs (247.16±23.41) pg/ml, (94.60±9.41) vs (328.24±30.86) pg/ml, (5.20±0.41) vs (10.33±1.01) U/ml, (1919.75±179.40) vs (4023.40±334.56) U/L, (5.20±0.41) vs (10.33±1.01) U/ml, (41.82±4.00) U/L vs (81.33±7.96) U/L. Compared with the 48 h group, the expression level of NF-κB p65 protein, IL-6, IL-1β, TNF-α, lipase, amylase and creatinine in the 48 h +PMA group were significantly increased, while the expression level of P-iκBα protein and the content of IL-10 were significantly decreased ( P<0.05) . Conclusion:Early nutritional intervention can inhibit inflammatory response, reduce intestinal injury and control the development of acute pancreatitis by regulating NF-κB signaling pathway.
10.Predicting respiratory motion using an Informer deep learning network
Guodong JIN ; Yuxiang LIU ; Bining YANG ; Ran WEI ; Xinyuan CHEN ; Xiaokun LIANG ; Hong QUAN ; Kuo MEN ; Jianrong DAI
Chinese Journal of Radiological Medicine and Protection 2023;43(7):513-517
Objective:To investigate a time series deep learning model for respiratory motion prediction.Methods:Eighty pieces of respiratory motion data from lung cancer patients were used in this study. They were divided into a training set and a test set at a ratio of 8∶2. The Informer deep learning network was employed to predict the respiratory motions with a latency of about 600 ms. The model performance was evaluated based on normalized root mean square errors (nRMSEs) and relative root mean square errors (rRMSEs).Results:The Informer model outperformed the conventional multilayer perceptron (MLP) and long short-term memory (LSTM) models. The Informer model yielded an average nRMSE and rRMSE of 0.270 and 0.365, respectively, at a prediction time of 423 ms, and 0.380 and 0.379, respectively, at a prediction time of 615 ms.Conclusions:The Informer model performs well in the case of a longer prediction time and has potential application value for improving the effects of the real-time tracking technology.

Result Analysis
Print
Save
E-mail