1.Metformin exerts a protective effect on articular cartilage in osteoarthritis rats by inhibiting the PI3K/AKT/mTOR pathway
Tianjie XU ; Jiaxin FAN ; Xiaoling GUO ; Xiang JIA ; Xingwang ZHAO ; Kainan LIU ; Qian WANG
Chinese Journal of Tissue Engineering Research 2025;29(5):1003-1012
BACKGROUND:Studies have shown that metformin has anti-inflammatory,anti-tumor,anti-aging and vasoprotective effects,and can inhibit the progression of osteoarthritis,but its specific mechanism of action remains unclear. OBJECTIVE:To investigate the mechanism of metformin on cartilage protection in a rat model of osteoarthritis. METHODS:Forty male Sprague-Dawley rats were randomly divided into four groups(n=10 per group):blank,control,sham-operated,and metformin groups.The blank group did not undergo any surgery.In the sham-operated group,the joint cavity was exposed.In the model group and the metformin group,the modified Hulth method was used to establish the osteoarthritis model.At 1 day after modeling,the rats in the metformin group were given 200 mg/kg/d metformin by gavage,and the model,blank,and sham-operated groups were given normal saline by gavage.Administration in each group was given for 4 weeks consecutively.Hematoxylin-eosin staining,toluidine blue staining,and safranin O-fast green staining were used to observe the morphological structure of rat knee joints.Immunohistochemical staining and western blot were used to detect the protein expression of SOX9,type Ⅱ collagen,a disintegrin and metalloproteinase with thrombospondin motifs 5(ADAMTS5),Beclin1,P62,phosphatidylinositol 3-kinase(PI3K),p-PI3K,protein kinase B(AKT),p-AKT,mammalian target of rapamycin(Mtor),and p-Mtor in rat cartilage tissue. RESULTS AND CONCLUSION:The results of hematoxylin-eosin,toluidine blue and safranin O-fast green staining showed smooth cartilage surface of the knee joints and normal histomorphology in the blank group and the sham-operated group,while in the model group,there was irregular cartilage surface of the knee joint and cartilage damage,with a decrease in the number of chondrocytes and the content of proteoglycans in the cartilage matrix.In the metformin group,there was a significant improvement in the damage to the structure of the cartilage in the knee joints of the rats,and the cartilage surface tended to be smooth,with an increase in the number of chondrocytes and the content of proteoglycans in the cartilage matrix.Immunohistochemistry staining and western blot results showed that compared with the control and sham-operated groups,the expression of SOX9,type Ⅱ collagen,and Beclin1 proteins in the cartilage tissue of rats in the model group was significantly decreased(P<0.05).Conversely,the expression of ADAMTS5,P62,as well as p-PI3K,p-AKT,and p-Mtor proteins was significantly increased(P<0.05).Furthermore,compared with the model group,the expression of SOX9,type Ⅱ collagen,and Beclin1 proteins in the cartilage tissue of rats in the metformin group was significantly increased(P<0.05),while the expression of ADAMTS5,P62,as well as p-PI3K,p-AKT,and p-Mtor proteins was significantly decreased(P<0.05).To conclude,Metformin can improve the autophagy activity of chondrocytes and reduce the degradation of cartilage matrix in osteoarthritis rats by inhibiting the activation of PI3K/AKT/Mtor signaling pathway,thus exerting a protective effect on articular cartilage.
2.Textural Research on Key Information of Liuhetang
Jiaxin GAO ; Jiahao WANG ; Renshou CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):234-244
Liuhetang is one of the classic prescriptions included in the Catalogue of Ancient Classic Prescriptions (the Second Batch). This study adopts the method of literature review to systematically sort out the ancient literature about Liuhetang and obtained a total of 127 effective data records, involving 82 ancient books (including 2 Japanese books). The origin, medicinal composition, compatibility, original plants and their processing methods, dosage, decocting method, usage, and indications of Liuhetang were analyzed. Liuhetang is first recorded in the Formulary of the Bureau of Taiping People's Welfare Pharmacy in the Song Dynasty, consisting of Amomi Fructus, Pinelliae Rhizoma, Armeniacae Semen Amarum, Ginseng Radix et Rhizoma, Glycyrrhizae Radix et Rhizoma, red Poria, Pogostemonis Herba, Lablab Semen Album, Chaenomelis Fructus, Moslae Herba, Magnoliae Officinalis Cortex, Zingiberis Rhizoma Recens, and Jujubae Fructus. The original plants of these herbal medicines follow those in the 2020 edition of the Pharmacopoeia of the People's Republic of China. The raw materials of Amomi Fructus, Armeniacae Semen Amarum, Ginseng Radix et Rhizoma, Glycyrrhizae Radix et Rhizoma, red Poria, Pogostemonis Herba, Chaenomelis Fructus, Moslae Herba, Magnoliae Officinalis Cortex, Zingiberis Rhizoma Recens, and Jujubae Fructus are used in this prescription. Pinelliae Rhizoma, Glycyrrhizae Radix et Rhizoma, Lablab Semen Album, and Magnoliae Officinalis Cortex are processed with alum, stir-fried, processed with Zingiberis Rhizoma Recens, and processed with Zingiberis Rhizoma Recens, respectively. The recommended formula is composed of 0.79 g Amomi Fructus, 0.79 g Pinelliae Rhizoma, 0.79 g Armeniacae Semen Amarum, 0.79 g Ginseng Radix et Rhizoma, 0.79 g Glycyrrhizae Radix et Rhizoma, 1.57 g red Poria, 1.57 g Pogostemonis Herba, 1.57 g Lablab Semen Album, 1.57 g Chaenomelis Fructus, 3.15 g Moslae Herba, and 3.15 g Magnoliae Officinalis Cortex. The above medicines should be pulverized to reach 10 meshes, mixed with 450 mL water, 3 g Zingiberis Rhizoma Recens, and 3 g Jujubae Fructus, and decocted to reach a volume of 240 mL. The filtrate should be taken three times a day. In ancient times, Liuhetang was mainly used to treat cholera, vomiting, diarrhea, phlegm, dyspnea, cough, chest distension, dizziness and pain in the head, swelling in the limbs, lethargy, loss of appetite, difficult urination and dark urine caused by heat and dampness damage to the spleen and disharmony between spleen and stomach. In modern times, Liuhetang is mainly used to treat the digestive system diseases such as gastroenteritis, hepatitis, stomach pain, and diarrhea. The above research confirmed the key information of Liuhetang, providing a basis for the clinical application of this prescription.
3.Gypenoside L Regulates piR-hsa-2804461/FKBP8/Bcl-2 Axis to Promote Apoptosis and Inhibit Ovarian Cancer
Yuanguang DONG ; Yinying SUN ; Mingdian YUAN ; Ying YANG ; Jiaxin WANG ; Jingxuan ZHU ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):98-106
ObjectiveTo explore the molecular mechanism by which gypenoside L (Gyp-L) promotes apoptosis and inhibits ovarian cancer (OC) through the FK506-binding protein (FKBP) prolyl isomerase 8 (FKBP8)/B-cell lymphoma-2 (Bcl-2) axis, with the piR-hsa-2804461 pathway as a breakthrough point. MethodsThe effects of different concentrations of Gyp-L and cis-platinum on the proliferation of OVCAR3 cells were determined by the cell count kit-8 method to identify the appropriate intervention concentration for subsequent experiments. OVCAR3 cells were allocated into blank, low-dose Gyp-L (Gyp-L-L, 50 µmol·L-1), high-dose Gyp-L (Gyp-L-H, 100 µmol·L-1), and cis-platinum (15 µmol·L-1) groups. The migration, colony formation, and apoptosis of OVCAR3 cells were detected by the cell scratch assay, colony formation assay, and flow cytometry, respectively. The mRNA levels of piR-hsa-2804461 and FKBP8/Bcl-2 axis-related genes in OVCAR3 cells were determined by Real-time PCR, and the expression levels of FKBP8/Bcl-2 axis-related proteins were determined by simple Western blot. Further, an OVCAR3 cell model with piR-hsa-2804461 knocked out was constructed. The cells were allocated into blank, NC-inhibitor, inhibitor, NC-inhibitor+Gyp-L, and inhibitor+Gyp-L groups. The colony formation of OVCAR3 cells was detected by the colony formation assay. The mRNA levels of piR-hsa-2804461 and FKBP8/Bcl-2 axis-related genes and the expression levels of FKBP8/Bcl-2 axis-related proteins were determined by Real-time PCR and simple Western blotting, respectively. ResultsGyp-L inhibited the migration and proliferation (P<0.01), promoted the apoptosis (P<0.05), up-regulated the mRNA level of piR-hsa-2804461 (P<0.05), and down-regulated the mRNA and protein levels of FKBP8 and Bcl-2 (P<0.05) in OVCAR3 cells. Furthermore, Gyp-L increased the mRNA and protein levels of Bcl-2-associated X protein (Bax), cysteinyl aspartate-specific proteinase (Caspase)-3, and Caspase-9, which are related to the FKBP8/Bcl-2 axis (P<0.05). ConclusionGyp-L may promote apoptosis by regulating the piR-hsa-2804461/FKBP8/Bcl-2 axis, thus affecting the occurrence of ovarian cancer.
4.Exploring Molecular Mechanism of Gypenoside L against Ovarian Cancer Based on Ferroptosis Pathway Mediated by Mature-tRNA-Asp-GTC/ATF3-LPCAT3
Jingxuan ZHU ; Jiao ZHAO ; Qun WANG ; Xiaofei SUN ; Jiaxin WANG ; Hongda ZHANG ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):107-117
ObjectiveTo investigate the role of mature-tRNA-Asp-GTC and pre-tRNA-Arg-TCT in the ferroptosis phenotype of ovarian cancer (OC) cells and the regulatory mechanism of gypenoside L (Gyp-L) on mature-tRNA-Asp-GTC and pre-tRNA-Arg-TCT in OC cells. MethodsThe proliferation of human ovarian adenocarcinoma OVCAR3 cells was detected by cell counting kit-8 (CCK-8) assay, and the half-maximal inhibitory concentration (IC50) values of cisplatin (DDP), Gyp-L, and DDP in the presence of Gyp-L were calculated to determine the intervention concentration for subsequent experiments. Cell cloning assay and scratch assay reflected the proliferation and migration ability of OVCAR3 cells. PANDORA-seq small RNA sequencing was used to detect the differentially expressed transfer RNA-derived small RNAs (tsRNAs) in the cells after Gyp-L intervention, and the corresponding target genes of the tsRNAs were found by the RNAhybrid software. Malondialdehyde (MDA), glutathione (GSH), and lipid peroxide (LPO) levels were measured by colorimetry or enzyme linked immunosorbent assay (ELISA) method, Fe2+ content by FerroOrange fluorescent probe, and reactive oxygen species (ROS) content by DCFH-DA fluorescent probe to reflect the occurrence of ferroptosis in OVCAR3 cells. OVCAR3 cells were divided into a control group, a 50 µmol·L-1 Gyp-L group, and a 100 µmol·L-1 Gyp-L group. Quantitative real-time polymerase chain reaction (PCR) was performed to detect the expression of mature-tRNA-Asp-GTC, mature-tRNA-Leu-CAA, mature-mt_tRNA-Tyr-GTA_5_end, mature-tRNA-Val-CAC, mature-mt_tRNA-Glu-TTC, pre-tRNA-Arg-TCT, mature-tRNA-Asn-GTT, hydroxymethylbilane synthase (HMBS), Wnt, β-catenin, glutathione peroxidase 4 (GPX4), Kelch-like ECH-associated protein 1 (KEAP1), nuclear factor erythroid 2-related factor 2 (Nrf2), activating transcription factor 3 (ATF3), cystine/glutamate antiporter xCT, lysophosphatidylcholine acyltransferase 3 (LPCAT3), and arachidonate 15-lipoxygenase (ALOX15). Western blot was performed to detect the expression of HMBS, Wnt, β-catenin, GPX4, KEAP1, Nrf2, ATF3, xCT, LPCAT3, and ALOX15 proteins. ResultsThe 50 µmol·L-1 Gyp-L, 100 µmol·L-1 Gyp-L, DDP, 50 µmol·L-1 Gyp-L+DDP, and 100 µmol·L-1 Gyp-L+DDP groups showed significantly inhibited proliferation and migration of OVCAR3 cells (P<0.05) and exacerbated cell ferroptosis as reflected by the increase in the content of ROS, MDA, LPO, and Fe2+, as well as a decrease in the content of GSH (P<0.05). Compared with the control group, Gyp-L effectively interfered with the expression of 25 tsRNAs in OVCAR3 cells (P<0.05, |log2Fc|>1). Pre-tRNA-Arg-TCT/HMBS/Wnt/β-catenin/GPX4, pre-tRNA-Arg-TCT/KEAP1/NRF2/xCT, mature-tRNA-Asp-GTC/ATF3/KEAP1/NRF2/xCT, and mature-tRNA-Asp-GTC/LPCAT3/ALOX15 axial expression was significantly aberrant after Gyp-L intervention (P<0.05). ConclusionThe pre-tRNA-Arg-TCT/HMBS/Wnt/β-catenin/GPX4, pre-tRNA-Arg-TCT/KEAP1/Nrf2/xCT, mature-tRNA-Asp-GTC/ATF3/KEAP1/Nrf2/xCT, and mature-tRNA-Asp-GTC/LPCAT3/ALOX15 signaling pathways are involved in OC development. Gyp-L inhibits OC development by activating OVCAR3 cell ferroptosis onset mainly through the mature-tRNA-Asp-GTC/ATF3/KEAP1/Nrf2/xCT and mature-tRNA-Asp-GTC/LPCAT3/ALOX15 signaling axes.
5.Molecular Mechanism of Gypenoside L in Anti-Ovarian Cancer by Affecting GCK-Mediated Glycolytic Pathway
Yuanguang DONG ; Nan SONG ; Ying YANG ; Jingxuan ZHU ; Jiaxin WANG ; Mingdian YUAN ; Yingying SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):118-124
ObjectiveTo explore the molecular mechanism of gypenoside L (Gyp-L) in the treatment of ovarian cancer (OC) by taking the glycolytic pathway of OC as the key point. MethodsThe proliferation activity of OVCAR3 cells was measured by the cell counting kit-8 (CCK-8) assay to determine the appropriate intervention concentration for subsequent experiments. The cell clone formation assay and the scratch healing assay were employed to assess the proliferation and migration capabilities of OVCAR3 cells. OVCAR3 cells were divided into a blank group, a Gyp-L-L group (low concentration of Gyp-L, 50 µmol
6.Molecular Mechanism of Treating Different Diseases with Same Treatment of Gypenoside L Affecting Oxidative Damage HUVEC and OVCAR-3 Through EGFR/STAT3/Glycolytic Pathway
Ying YANG ; Jiao ZHAO ; Xiaofei SUN ; Jiaxin WANG ; Peng CUI ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):125-134
ObjectiveWith the epidermal growth factor receptor(EGFR)/Signal Transducers and Activators of Transcription(STAT3)/Hexokinase 2(HK2) signaling pathway in atherosclerosis (AS) and ovarian cancer (OC) as the entry point, this paper discusses the molecular mechanism of Gypenoside L (Gyp-L) treating AS and OC with different diseases, provides a new perspective and theoretical basis for TCM treating AS and OC with EGFR-STAT3-HK2 pathway, and enriches the scientific connotation of the theory of "cytoskeleton in the heart". MethodsCCK-8 was used to detect the proliferation of HUVEC and OVCAR-3 cells, in order to determine the intervention concentration for subsequent experiments. The colorimetric method was used to detect the NO content in HUVEC and the contents of pyruvate and LDH in two cell lines. Cell cloning experiments and scratch experiments reflect the proliferation and migration ability of OVCAR-3 cells. Western blot was used to detect the expression levels of relevant proteins. Furthermore, two cell models overexpressing EGFR were constructed and co treated with Gyp-L. HUVEC cells were divided into control, ox-LDL, OE-NC, OE-EGFR, OE-NC+Gyp-L, and OE-EGFR+Gyp-L group. OVCAR-3 cells were divided into control, OE-NC, OE-EGFR , OE-NC+Gyp-L, and OE-EGFR+Gyp-L group. The colorimetric method was used to detect the NO content in HUVEC and the contents of pyruvate and LDH in two cell lines. Western blot was used to detect the expression levels of EGFR-STAT3-HK2 pathway related proteins. Cell cloning experiments and scratch experiments reflect the proliferation and migration ability of OVCAR-3 cells. ResultsGyp-L can significantly reduce the NO content of HUVEC and the pyruvate and LDH content of two cell lines (P<0.05); Inhibit the proliferation and migration ability of OVCAR-3 cells; Reduce the expression levels of EGFR/STAT3/HK2 pathway related proteins in HUVEC and OVCAR-3 cell lines (P<0.05), and inhibit the glycolysis pathway. ConclusionGyp-L can inhibit glycolysis in HUVEC and OVCAR-3 cells through the EGFR/STAT3/HK2 pathway,thereby suppressing the occurrence and development of AS and OC.
7.Gypenoside L Regulates piR-hsa-2804461/FKBP8/Bcl-2 Axis to Promote Apoptosis and Inhibit Ovarian Cancer
Yuanguang DONG ; Yinying SUN ; Mingdian YUAN ; Ying YANG ; Jiaxin WANG ; Jingxuan ZHU ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):98-106
ObjectiveTo explore the molecular mechanism by which gypenoside L (Gyp-L) promotes apoptosis and inhibits ovarian cancer (OC) through the FK506-binding protein (FKBP) prolyl isomerase 8 (FKBP8)/B-cell lymphoma-2 (Bcl-2) axis, with the piR-hsa-2804461 pathway as a breakthrough point. MethodsThe effects of different concentrations of Gyp-L and cis-platinum on the proliferation of OVCAR3 cells were determined by the cell count kit-8 method to identify the appropriate intervention concentration for subsequent experiments. OVCAR3 cells were allocated into blank, low-dose Gyp-L (Gyp-L-L, 50 µmol·L-1), high-dose Gyp-L (Gyp-L-H, 100 µmol·L-1), and cis-platinum (15 µmol·L-1) groups. The migration, colony formation, and apoptosis of OVCAR3 cells were detected by the cell scratch assay, colony formation assay, and flow cytometry, respectively. The mRNA levels of piR-hsa-2804461 and FKBP8/Bcl-2 axis-related genes in OVCAR3 cells were determined by Real-time PCR, and the expression levels of FKBP8/Bcl-2 axis-related proteins were determined by simple Western blot. Further, an OVCAR3 cell model with piR-hsa-2804461 knocked out was constructed. The cells were allocated into blank, NC-inhibitor, inhibitor, NC-inhibitor+Gyp-L, and inhibitor+Gyp-L groups. The colony formation of OVCAR3 cells was detected by the colony formation assay. The mRNA levels of piR-hsa-2804461 and FKBP8/Bcl-2 axis-related genes and the expression levels of FKBP8/Bcl-2 axis-related proteins were determined by Real-time PCR and simple Western blotting, respectively. ResultsGyp-L inhibited the migration and proliferation (P<0.01), promoted the apoptosis (P<0.05), up-regulated the mRNA level of piR-hsa-2804461 (P<0.05), and down-regulated the mRNA and protein levels of FKBP8 and Bcl-2 (P<0.05) in OVCAR3 cells. Furthermore, Gyp-L increased the mRNA and protein levels of Bcl-2-associated X protein (Bax), cysteinyl aspartate-specific proteinase (Caspase)-3, and Caspase-9, which are related to the FKBP8/Bcl-2 axis (P<0.05). ConclusionGyp-L may promote apoptosis by regulating the piR-hsa-2804461/FKBP8/Bcl-2 axis, thus affecting the occurrence of ovarian cancer.
8.Exploring Molecular Mechanism of Gypenoside L against Ovarian Cancer Based on Ferroptosis Pathway Mediated by Mature-tRNA-Asp-GTC/ATF3-LPCAT3
Jingxuan ZHU ; Jiao ZHAO ; Qun WANG ; Xiaofei SUN ; Jiaxin WANG ; Hongda ZHANG ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):107-117
ObjectiveTo investigate the role of mature-tRNA-Asp-GTC and pre-tRNA-Arg-TCT in the ferroptosis phenotype of ovarian cancer (OC) cells and the regulatory mechanism of gypenoside L (Gyp-L) on mature-tRNA-Asp-GTC and pre-tRNA-Arg-TCT in OC cells. MethodsThe proliferation of human ovarian adenocarcinoma OVCAR3 cells was detected by cell counting kit-8 (CCK-8) assay, and the half-maximal inhibitory concentration (IC50) values of cisplatin (DDP), Gyp-L, and DDP in the presence of Gyp-L were calculated to determine the intervention concentration for subsequent experiments. Cell cloning assay and scratch assay reflected the proliferation and migration ability of OVCAR3 cells. PANDORA-seq small RNA sequencing was used to detect the differentially expressed transfer RNA-derived small RNAs (tsRNAs) in the cells after Gyp-L intervention, and the corresponding target genes of the tsRNAs were found by the RNAhybrid software. Malondialdehyde (MDA), glutathione (GSH), and lipid peroxide (LPO) levels were measured by colorimetry or enzyme linked immunosorbent assay (ELISA) method, Fe2+ content by FerroOrange fluorescent probe, and reactive oxygen species (ROS) content by DCFH-DA fluorescent probe to reflect the occurrence of ferroptosis in OVCAR3 cells. OVCAR3 cells were divided into a control group, a 50 µmol·L-1 Gyp-L group, and a 100 µmol·L-1 Gyp-L group. Quantitative real-time polymerase chain reaction (PCR) was performed to detect the expression of mature-tRNA-Asp-GTC, mature-tRNA-Leu-CAA, mature-mt_tRNA-Tyr-GTA_5_end, mature-tRNA-Val-CAC, mature-mt_tRNA-Glu-TTC, pre-tRNA-Arg-TCT, mature-tRNA-Asn-GTT, hydroxymethylbilane synthase (HMBS), Wnt, β-catenin, glutathione peroxidase 4 (GPX4), Kelch-like ECH-associated protein 1 (KEAP1), nuclear factor erythroid 2-related factor 2 (Nrf2), activating transcription factor 3 (ATF3), cystine/glutamate antiporter xCT, lysophosphatidylcholine acyltransferase 3 (LPCAT3), and arachidonate 15-lipoxygenase (ALOX15). Western blot was performed to detect the expression of HMBS, Wnt, β-catenin, GPX4, KEAP1, Nrf2, ATF3, xCT, LPCAT3, and ALOX15 proteins. ResultsThe 50 µmol·L-1 Gyp-L, 100 µmol·L-1 Gyp-L, DDP, 50 µmol·L-1 Gyp-L+DDP, and 100 µmol·L-1 Gyp-L+DDP groups showed significantly inhibited proliferation and migration of OVCAR3 cells (P<0.05) and exacerbated cell ferroptosis as reflected by the increase in the content of ROS, MDA, LPO, and Fe2+, as well as a decrease in the content of GSH (P<0.05). Compared with the control group, Gyp-L effectively interfered with the expression of 25 tsRNAs in OVCAR3 cells (P<0.05, |log2Fc|>1). Pre-tRNA-Arg-TCT/HMBS/Wnt/β-catenin/GPX4, pre-tRNA-Arg-TCT/KEAP1/NRF2/xCT, mature-tRNA-Asp-GTC/ATF3/KEAP1/NRF2/xCT, and mature-tRNA-Asp-GTC/LPCAT3/ALOX15 axial expression was significantly aberrant after Gyp-L intervention (P<0.05). ConclusionThe pre-tRNA-Arg-TCT/HMBS/Wnt/β-catenin/GPX4, pre-tRNA-Arg-TCT/KEAP1/Nrf2/xCT, mature-tRNA-Asp-GTC/ATF3/KEAP1/Nrf2/xCT, and mature-tRNA-Asp-GTC/LPCAT3/ALOX15 signaling pathways are involved in OC development. Gyp-L inhibits OC development by activating OVCAR3 cell ferroptosis onset mainly through the mature-tRNA-Asp-GTC/ATF3/KEAP1/Nrf2/xCT and mature-tRNA-Asp-GTC/LPCAT3/ALOX15 signaling axes.
9.Molecular Mechanism of Gypenoside L in Anti-Ovarian Cancer by Affecting GCK-Mediated Glycolytic Pathway
Yuanguang DONG ; Nan SONG ; Ying YANG ; Jingxuan ZHU ; Jiaxin WANG ; Mingdian YUAN ; Yingying SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):118-124
ObjectiveTo explore the molecular mechanism of gypenoside L (Gyp-L) in the treatment of ovarian cancer (OC) by taking the glycolytic pathway of OC as the key point. MethodsThe proliferation activity of OVCAR3 cells was measured by the cell counting kit-8 (CCK-8) assay to determine the appropriate intervention concentration for subsequent experiments. The cell clone formation assay and the scratch healing assay were employed to assess the proliferation and migration capabilities of OVCAR3 cells. OVCAR3 cells were divided into a blank group, a Gyp-L-L group (low concentration of Gyp-L, 50 µmol
10.Molecular Mechanism of Treating Different Diseases with Same Treatment of Gypenoside L Affecting Oxidative Damage HUVEC and OVCAR-3 Through EGFR/STAT3/Glycolytic Pathway
Ying YANG ; Jiao ZHAO ; Xiaofei SUN ; Jiaxin WANG ; Peng CUI ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):125-134
ObjectiveWith the epidermal growth factor receptor(EGFR)/Signal Transducers and Activators of Transcription(STAT3)/Hexokinase 2(HK2) signaling pathway in atherosclerosis (AS) and ovarian cancer (OC) as the entry point, this paper discusses the molecular mechanism of Gypenoside L (Gyp-L) treating AS and OC with different diseases, provides a new perspective and theoretical basis for TCM treating AS and OC with EGFR-STAT3-HK2 pathway, and enriches the scientific connotation of the theory of "cytoskeleton in the heart". MethodsCCK-8 was used to detect the proliferation of HUVEC and OVCAR-3 cells, in order to determine the intervention concentration for subsequent experiments. The colorimetric method was used to detect the NO content in HUVEC and the contents of pyruvate and LDH in two cell lines. Cell cloning experiments and scratch experiments reflect the proliferation and migration ability of OVCAR-3 cells. Western blot was used to detect the expression levels of relevant proteins. Furthermore, two cell models overexpressing EGFR were constructed and co treated with Gyp-L. HUVEC cells were divided into control, ox-LDL, OE-NC, OE-EGFR, OE-NC+Gyp-L, and OE-EGFR+Gyp-L group. OVCAR-3 cells were divided into control, OE-NC, OE-EGFR , OE-NC+Gyp-L, and OE-EGFR+Gyp-L group. The colorimetric method was used to detect the NO content in HUVEC and the contents of pyruvate and LDH in two cell lines. Western blot was used to detect the expression levels of EGFR-STAT3-HK2 pathway related proteins. Cell cloning experiments and scratch experiments reflect the proliferation and migration ability of OVCAR-3 cells. ResultsGyp-L can significantly reduce the NO content of HUVEC and the pyruvate and LDH content of two cell lines (P<0.05); Inhibit the proliferation and migration ability of OVCAR-3 cells; Reduce the expression levels of EGFR/STAT3/HK2 pathway related proteins in HUVEC and OVCAR-3 cell lines (P<0.05), and inhibit the glycolysis pathway. ConclusionGyp-L can inhibit glycolysis in HUVEC and OVCAR-3 cells through the EGFR/STAT3/HK2 pathway,thereby suppressing the occurrence and development of AS and OC.

Result Analysis
Print
Save
E-mail