1.Effect of sodium-glucose cotransporter 2 inhibitor empagliflozin in alleviating uremic cardiomyopathy and related mechanism
Shi CHENG ; Yeqing XIE ; Wei LU ; Jiarui XU ; Yong YU ; Ruizhen CHEN ; Bo SHEN ; Xiaoqiang DING
Chinese Journal of Clinical Medicine 2025;32(2):248-258
Objective To investigate the effect of sodium-glucose cotransporter 2 inhibitor (empagliflozin, EMPA) on myocardial remodeling in a mouse uremic cardiomyopathy (UCM) model induced by 5/6 nephrectomy, through the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (PKB/AKT)/p65 signaling pathway. Methods The animals were divided into three groups: Sham group (n=6), UCM group (n=8), and UCM+EMPA group (n=8). A UCM model was established in C57BL/6N mice using the 5/6 nephrectomy. Starting from 5 weeks post-surgery, EMPA or a placebo was administered. After 16 weeks, blood pressure, serum creatinine, blood urea nitrogen, 24-hour urine glucose and urine sodium were measured. Cardiac structure and function were assessed by echocardiography. Hematoxylin-eosin (HE) staining and Masson trichrome staining were used to observe pathological changes in the heart and kidneys. Wheat germ agglutinin (WGA) staining was used to evaluate myocardial hypertrophy. The real-time quantitative PCR (RT-qPCR) was used to detect the expression levels of myocardial hypertrophy- and fibrosis-related mRNAs. Western blotting was used to detect the expression levels of PI3K, AKT and p65 in myocardial tissues. Results After 16 weeks, UCM group exhibited significantly higher blood pressure, serum creatinine, blood urea nitrogen than sham group (P<0.01); UCM+EMPA group exhibited lower blood pressure, serum creatinine, blood urea nitrogen, and higher 24 h urine sodium and glucose than UCM group (P<0.05). Echocardiographic results showed ventricular remodeling in the UCM group, evidenced by left ventricular wall thickening, left ventricular enlargement, increased left ventricular mass, and decreased systolic function (P<0.05); ventricular remodeling was alleviated (P<0.05), though there was no significant improvement in systolic function in UCM+EMPA group. HE and Masson stainings revealed myocardial degeneration, necrosis, and interstitial fibrosis in UCM group (P<0.01); the myocardial pathology improved with reduced collagen deposition in UCM+EMPA group (P<0.01). WGA staining confirmed myocardial hypertrophy in UCM group (P<0.01), while myocardial hypertrophy was alleviated in UCM+EMPA group (P<0.01). RT-qPCR results showed myocardial hypertrophy- and fibrosis-related genes (NPPA, NPPB, MYH7, COL1A1, COL3A1, TGF-β1) were upregulated in UCM group (P<0.05), but downregulated in UCM+EMPA group. Western blotting showed PI3K, p-AKT/AKT ratio, and p-p65/p65 ratio were increased in UCM group, but decreased in UCM+EMPA group (P<0.05). Conclusion EMPA can improve myocardial hypertrophy and fibrosis in the UCM mouse model, and it may play the role through inhibiting the PI3K/AKT/p65 signaling pathway.
2.Role of exosome-derived miRNA-21-5p/Smad7 in quartz dust-induced pulmonary fibrosis in rats
Yang LU ; Xiaohui DING ; Tiantian WANG ; Mengtong XU ; Jiarui HAO ; Wenjing LI ; Jing SONG
Journal of Environmental and Occupational Medicine 2024;41(8):861-866
Background Quartz dust cannot be degraded in the lungs, and inhalation of a large amount of quartz dust in the occupational production process will lead to the occurrence of pulmonary fibrosis, and then develop into silicosis. In recent years, studies have found that exosomes may be involved in the pathogenesis of fibrotic diseases by carrying microribonucleic acid (miRNA), but the mechanism of their actions in silicosis still needs to be studied. Objective To investigate the role of exosome-derived miRNA-21-5p/mothers against decapentaplegic homolog 7 (Smad7) in quartz dust-induced pulmonary fibrosis in rats. Methods Twenty-four healthy male SD rats were randomly divided into four groups (six rats in each group): control 4-week group, control 16-week group, quartz 4-week group, and quartz 16-week group. At the beginning of the experiment, 1 mL of quartz suspension (50 mg·mL−1) and 1 mL of normal saline were injected into the trachea of rats in the quartz group and the control group, respectively, by means of one-time non-exposure intratracheal dust staining. Alveolar lavage was performed at the 4th and 16th weeks after dust staining, the exosomes in lavage solution were extracted by polyethylene glycol (PEG) precipitation, morphological identification was conducted by transmission electron microscopy (TEM), particle size of exosomes was detected by nano-tracking analysis (NTA), and the marker proteins CD9 and CD63 of exosomes were detected by Western blotting (WB). The expression of miRNA-21-5p in exosomes was determined by reverse transcription polymerase chain reaction (RT-PCR). The degree of lung tissue injury and fibrosis was observed by hematoxylin-eosin staining (HE) and Masson staining. The collagen content of lung tissue was detected by hydroxyproline (HYP) method. The expression of Smad7 protein in lung tissue was detected by WB. Results The results of pathological staining showed that compared with the control group, lung inflammatory cell infiltration, alveolar wall thickening, and collagen increase were observed after 4 weeks of dusting, and collagen deposition and silicon nodules appeared after 16 weeks of dusting. Compared with the control group, the expression level of HYP in the lung tissue of the quartz group was increased after 4 weeks and 16 weeks of dust staining (P<0.05). Transmission electron microscopy showed that exosomes were saucer-shaped, and the average particle size of exosomes was 95.8 nm by NTA. Positive expression of exosome marker proteins CD9 and CD81 was found by WB. Compared with the control group, the expression of exosome-derived miRNA-21-5p in alveolar lavage fluid in the quartz group increased in the 4th week and the 16th week (P<0.05), and the expression of Smad7 protein in lung tissue decreased (P<0.05). Conclusion Exosome-derived miRNA-21-5p and Smad7 may be involved in the mechanism of quartz dust-induced pulmonary fibrosis in rats.
3.Fungal luminescence pathways: research and applications.
Yujie WU ; Jiarui XU ; Hongyu CHEN ; Hao DU
Chinese Journal of Biotechnology 2024;40(1):1-14
The fungal bioluminescence pathway (FBP) is a metabolic pathway responsible for the generation of bioluminescence derived from fungi. This pathway utilizes caffeic acid as the substrate, generating a high-energy intermediate, and the decomposition of which yields green fluorescence with a wavelength of approximately 520 nm. The FBP is evolutionally conserved in luminescent fungal groups. Unlike other bioluminescent systems, the FBP is particularly suitable for engineering applications in eukaryotic organisms, especially in plants. Currently, metabolically engineered luminescent plants are able to emit visible light to illuminate its surroundings, which can be visualized clearly in the dark. The fungal bioluminescent system could be explored in various applications in molecular biology, biosensors and glowing ornamental plants, and even green lighting along city streets.
Luminescence
;
Light
;
Fluorescence
;
Eukaryota
;
Green Light
4.Relationship of miR-126 and miR-325 in serum and vitreous with the severity of proliferative vitreoretinopathy
Xin TANG ; Zhiming LIU ; Ningda XU ; Jiarui LI ; Lyuzhen HUANG
International Eye Science 2024;24(3):351-355
AIM: To explore the relationship of miR-126 and miR-325 in serum and vitreous with the severity of proliferative vitreoretinopathy(PVR).METHODS: A total of 100 cases(100 eyes)with PVR who were treated in our hospital from October 2019 to October 2022 were selected and retrospectively studied. They were divided into a mild group(42 eyes)and a severe group(58 eyes)according to the degree of retinopathy, and another 30 cases(30 eyes)that underwent vitrectomy without retinopathy due to eye trauma in our hospital during the same period were selected as the control group. Fluorescence quantitative PCR was used to detect the expression levels of miR-126 and miR-325 in serum and vitreous; ELISA was used to detect the levels of transforming growth factor β(TGF-β), platelet-derived growth factor(PDGF), vascular endothelial growth factor(VEGF), and tumor necrosis factor α(TNF-α)in serum and vitreous; and Pearson's method was used to analyze the correlation between the serum and vitreous levels of miR-126 and miR-325 correlated with the levels of TGF-β, PDGF, VEGF, and TNF-α; Logistic multifactorial analysis was used to analyze the influencing factors for the occurrence of severe PVR.RESULTS: Compared with the control group, miR-126 levels in serum and vitreous of PVR patients were decreased and lower in the severe PVR group than in the mild PVR group(both P<0.05); miR-325 levels were increased and higher in the severe PVR group than in the mild PVR group(both P<0.05). TGF-β, PDGF, VEGF, and TNF-α levels in serum and vitreous were increased in the severe PVR group compared to the mild PVR group(all P<0.05). The miR-126 levels in serum and vitreous of patients with PVR were negatively correlated with miR-325, TGF-β, VEGF, TNF-α, and PDGF levels(all P<0.05), and miR-325 was positively correlated with TGF-β, VEGF, TNF-α, and PDGF levels(all P<0.05). Logistic regression analysis showed that miR-325, TGF-β, PDGF, and TNF-α were all independent risk factors for the development of severe PVR in serum and vitreous, and miR-126 was an independent protective factor for the development of severe PVR in serum and vitreous(P<0.05).CONCLUSION: With the aggravation of PVR, miR-126 expression in serum and vitreous decreased while miR-325 expression increased and correlated with TGF-β, TNF-α, VEGF, and PDGF.
5.Analysis of N6-methyladenosine methylation and N6-methyladenosine RNA binding protein 1 in rats with subchronic aluminum exposure
DING Xiaohui ; LU Yang ; HAO Jiarui ; WANG Tiantian ; XU Mengtong ; SONG Jing
Journal of Preventive Medicine 2024;36(9):825-828
Objective:
To explore the effects of subchronic aluminum exposure on the level of N6-methyladenosine (m6A) methylation and the expression of N6-methyladenosine RNA binding protein 1 (YTHDF1) in the hippocampus of rats.
Methods:
Twenty-four healthy male SD rats were randomly divided into the control group (normal saline), the low dose group [10 μmol/kg Al(mal)3], the medium dose group [20 μmol/kg Al(mal)3] and the high dose group [40 μmol/kg Al(mal)3], with 6 rats in each group. The Al(mal)3 solution was administered via intraperitoneal injection on alternate days for 90 days. Escape latency, target quadrant dwell time and platform crossing times were tested to evaluate the learning and memory ability of the rats by the Morris water maze test after exposure. The brain tissue was weighted and the brain-to-body weight ratio was calculated after euthanasia. The level of m6A methylation and the expression of YTHDF1 were determined by enzyme-linked immunosorbent assay and western blot assay, respectively.
Results:
All rats survived during aluminum exposure period. The brain-to-body weight ratios of the control group and the low, medium and high dose groups were (0.46±0.06)%, (0.44±0.04)%, (0.49±0.06)% and (0.51±0.07)%, respectively, with no statistically significant differences (P>0.05). The escape latency of rats in the high dose group was longer than that in control and low group during the third to fifth day (both P>0.05). The escape latency of rats in all groups was shortened with the increase of training days (P<0.05). The target quadrant dwell time of rats in low, medium and high dose groups were lower than that in control group, and the platform crossing times of rats in high dose group were lower than that in control group (all P<0.05). The methylation level of m6A and expression level of YTHDF1 in hippocampus of rats in medium and high dose groups was higher than that in control group (both P<0.05).
Conclusion
The learning and memory impairment caused by subchronic aluminum exposure may be related to the increase of m6A methylation level and the decrease of YTHDF1 expression.
6.Expression profiling of miRNAs in chrysotile-exposed lung epithelial cells
Jiarui HE ; Juan SONG ; Yujun WANG ; Xu ZHANG ; Jie YANG ; Tingting HUO ; Faqin DONG ; Jianjun DENG
Journal of Environmental and Occupational Medicine 2024;41(11):1277-1282
Background Chrysotile is widely used in construction and industry. Research has shown that it is associated with lung fibrosis in occupational groups, but the involvement of microRNAs (miRNAs) in chrysotile-induced lung fibrosis has been less well studied, and the specific mechanism is still unclear. Objective Using next-generation sequencing technology to analyze the effects of chrysotile exposure on the miRNAs expression profiles of human lung epithelial cells (BEAS-2B cells), to explore the variations of differentially expressed miRNAs and related signaling pathways, and to identify potential targets and molecular mechanisms of chrysotile-induced lung fibrosis. Methods Chrysotile was analyzed with a laser particle size analyzer and an X-ray diffractometer for particle size and physical phase. BEAS-2B cells were exposed to chrysotile for designed time sessions (12, 24, and 48 h) and doses (0, 50, 100, and 200 μg·mL−1). Cell viability was detected with a cell viability assay kit (CCK8); expression levels of Fibronectin, Collagen-Ⅰ, and α-smooth muscle actin (α-SMA) were detected by Western blot after exposure to 200 μg·mL−1 chrysotile for 24 h. Sample correlation and changes in miRNAs expression profiles between the chrysotile-exposed and the control groups were analyzed by next-generation sequencing technology. The target genes of differentially expressed miRNAs were predicted and subjected to Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Results The average particle size of the chrysotile dust sample used in this study was 3.58 μm, and the results of X-ray diffraction analysis confirmed the characteristic peaks of chrysotile. Compared with the control group, the chrysotile gradually inhibited the survival rate of BEAS-2B cells with increasing concentration and exposure time (P<0.01). The survival rates of the 50, 100, and 200 μg·mL−1 chrysotile-exposed cells after 12 h exposure were 83.88%±1.86%, 78.07%±3.97%, and 71.95%±2.99%, respectively; the survival rates after 24 h exposure were 77.41%±1.58%, 69.57%±2.23%, and 62.79%±3.65%, respectively; the survival rates after 48 h exposure were 74.31%±4.93%, 65.84%±2.71%, and 52.74%±6.31%, respectively. The Fibronectin, Collagen-Ⅰ, and α-SMA protein expression levels were elevated in the 200 μg·mL−1 chrysotile-exposed BEAS-2B cells (P <0.05). The results of principal component analysis showed that there were differences in the composition of the samples between the chrysotile exposure group and the control group, and a total of 163 differential miRNAs were screened, of which 79 were up-regulated and 84 were down-regulated. The results of GO analysis showed that the differential miRNAs were mainly associated with biological processes such as regulation of transcription by RNA polymerase II, regulation of DNA templated transcription, cellular differentiation, protein phosphorylation, lipid metabolism, and cell cycle, cellular components such as nucleus, cytomembrane, cytoskeleton, mitochondria, and endoplasmic reticulum, as well as molecular functions such as protein binding, metal ion binding, transferase activity, and DNA binding. The results of KEGG analysis revealed that the differential miRNAs were mainly enriched in cancer pathway, phosphatidylinositol 3-kinase/ protein kinase B (PI3K/AKT) pathway, Ras-associated protein 1 (Rap1) pathway, calcium pathway, cyclic guanosine monophosphate/ protein kinase G (cGMP-PKG) pathway, Hippo pathway, cyclic adenosine monophosphate (cAMP) pathway, and Ras pathway. Conclusion Chrysotile exposure could significantly inhibit BEAS-2B cell survival, elevate the expression of lung fibrosis-associated proteins, and induce differential miRNAs expression, affecting biological processes (such as lipid metabolism, protein phosphorylation, and cell cycle) and cell components (such as mitochondria and endoplasmic reticulum), and interfering with PI3K/AKT pathway, Hippo pathway, cAMP pathway, Rap1 pathway, and Ras pathway.
7.Antioxidant activity of water extract from bamboo stems and its protective effect on t-BHP induced oxidative damage in Caco-2 cells
Xin YUAN ; Yunlong HUANG ; Xiaomin XIE ; Zihan ZHONG ; Jiarui CHEN ; Cuiyu BAO ; Xu YANG ; Ping MA
Journal of Public Health and Preventive Medicine 2024;35(6):50-54
Objective To investigate the antioxidant activity of bamboo stem extracts and the therapeutic effect of bamboo stem water extract on oxidative inflammation induced by tert butyl hydroperoxide (t-BHP) in human colon adenocarcinoma cells (Caco-2). Methods In this study, ABTS, DPPH, and FRAP assays were used to determine the extracellular antioxidant activity of petroleum ether extract, ethyl acetate extract, n-butanol extract, 95% ethanol extract, and distilled water extract from bamboo stems. The human intestinal Caco-2 cell line was used as the model cell, and t-BHP was selected as the oxidative stress modeling agent. The CCK-8 assay was used to detect cell viability and the optimal oxidative damage concentration of t-BHP. The content of MDA, 8-OHdG, TNF-α and IL-1β were detected to assess antioxidant stress effect. Results The five extracts of bamboo all had certain antioxidant activity, among which the water extract of bamboo stem had the best comprehensive antioxidant activity with high cell viability in Caco-2 cells. The optimal modeling concentration of t-BHP was 200 μMol/L. The water extract of bamboo stem significantly reduced the content of oxidative stress related biomarkers and inflammatory factors in Caco-2 cells induced by t-BHP. Conclusion The stem extracts of bamboo in Xianning City have strong in vitro antioxidant activity. Among them, the water extract of bamboo stem has a protective effect on t-BHP induced oxidative damage in Caco-2 cells, suggesting that the water extract possesses a potential to be developed as new antioxidant products for clinical prevention and treatment of oxidative damage related diseases.
8.Survey and analysis on fertility status of female employees aged 22-35 years by industries
Changyan YU ; Jiarui XIN ; Ming XU ; Zhenxia KOU ; Wenlan YU ; Meibian ZHANG ; Xuefei LI
Journal of Environmental and Occupational Medicine 2024;41(4):397-402
Background As the population ages, there has been a growing focus on the decline in fertility. Research has identified age and fertility history as the primary influencing factors. Nevertheless, there is a deficiency in fundamental data regarding the fertility status among different industries. Objective To investigate the fertility status and influencing factors among female workers aged 22-35 years in different industries. Methods From July 2020 to February 2021, a cross-sectional survey was conducted using a staged sampling approach. This survey specifically targeted 22-35-year-old married female workers with a history of pregnancy in industries such as education, healthcare, finance, and telecommunications, totaling 22903 participants. The survey encompassed industry, demographic characteristics, pregnancy history, time to pregnancy (TTP), and other influencing factors. The influencing factors of decline in fertility were identified by chi-square test and Cox proportional hazards regression. Subsequent industry-specific Cox proportional hazards regression models were used to compared fertility decline patterns across a spectrum of industries after selected influencing factors were adjusted. Results Among the 22903 respondents, 19194 valid questionnaires were collected, with a valid recovery rate of 83.8%. The cumulative pregnancy rates (CRP) of 1-6 months and 1-12 months for the 22-35-year-old female workers were 67.23% and 91.33% respectively. The multivariate analysis showed that region, age, education level, personal annual income, housework time, coping style, gravidity, parity, and spontaneous abortion were influencing factors of fertility decline (P<0.05). Female workers with ≥3 gravidities and ≥2 spontaneous abortions had a higher risk of fertility decline, with hazard ratios (HR) and associated 95% confidence interval (95%CI) of 0.633 (0.582, 0.688) and 0.785 (0.670, 0.921) respectively (P<0.01). Compared to the education industry, the healthcare and finance industries showed a higher risk of fertility decline, with HR (95%CI) values of 0.876 (0.834, 0.920) and 0.909 (0.866, 0.954), respectively (P<0.05). These two HR (95%CI) values remained statistically significant [0.899 (0.852, 0.948) and 0.882 (0.833, 0.934) respectively, P<0.05)] after further adjustment with nine influencing factors such as region and age. Conclusion Regions, age, education level, personal annual income, housework time, coping style, pregnancy and childbirth times, and natural abortion times are influencing factors of fertility decline in female workers. Compared to the education industry, the healthcare and finance industries have a higher risk of declining fertility.
9.Research progress in roles of fibroblast activation in tissue fibrosis,autoimmune diseases and tumor disease
Xin GU ; Yujiao XU ; Jiarui SUN ; Yunyao LIU ; Lei QIANG
Chinese Journal of Pharmacology and Toxicology 2024;38(3):200-211
Fibroblasts are stromal cells widely distributed in tissues and organs throughout the body.Fibroblasts are involved in the synthesis and remodelling of the extracellular matrix.Fibroblasts participate in physiopathological processes such as tissue damage repair,inflammatory responses and immune regulation.Large numbers of activated fibroblasts have been found in fibrosis,autoimmune diseases and tumor lesions.Activated fibroblasts participate in tissue fibrosis and influence the tumor microenvi-ronment mainly by secreting collagen and fibronectin.They also secrete a variety of inflammatory and growth factors that play an immunomodulatory role in autoimmunity and tumors.In recent years,it has been found that modulating fibroblast activation can effectively delay the development of these diseases,and that targeting fibroblast activation biomarkers can assess the development and treatment of these diseases.Therefore,the use of fibroblast-targeted drugs and therapeutic tools is expected to achieve new breakthroughs in the clinical management of fibrosis,autoimmune diseases and tumors.
10.Investigation and analysis of the current status of transjugular intrahepatic portosystemic shunt treatment for portal hypertension in China
Haozhuo GUO ; Meng NIU ; Haibo SHAO ; Xinwei HAN ; Jianbo ZHAO ; Junhui SUN ; Zhuting FANG ; Bin XIONG ; Xiaoli ZHU ; Weixin REN ; Min YUAN ; Shiping YU ; Weifu LYU ; Xueqiang ZHANG ; Chunqing ZHANG ; Lei LI ; Xuefeng LUO ; Yusheng SONG ; Yilong MA ; Tong DANG ; Hua XIANG ; Yun JIN ; Hui XUE ; Guiyun JIN ; Xiao LI ; Jiarui LI ; Shi ZHOU ; Changlu YU ; Song HE ; Lei YU ; Hongmei ZU ; Jun MA ; Yanming LEI ; Ke XU ; Xiaolong QI
Chinese Journal of Radiology 2024;58(4):437-443
Objective:To investigate the current situation of the use of transjugular intrahepatic portosystemic shunt (TIPS) for portal hypertension, which should aid the development of TIPS in China.Methods:The China Portal Hypertension Alliance (CHESS) initiated this study that comprehensively investigated the basic situation of TIPS for portal hypertension in China through network research. The survey included the following: the number of surgical cases, main indications, the development of Early-TIPS, TIPS for portal vein cavernous transformation, collateral circulation embolization, intraoperative portal pressure gradient measurement, commonly used stent types, conventional anticoagulation and time, postoperative follow-up, obstacles, and the application of domestic instruments.Results:According to the survey, a total of 13 527 TIPS operations were carried out in 545 hospitals participating in the survey in 2021, and 94.1% of the hospital had the habit of routine follow-up after TIPS. Most hospitals believed that the main indications of TIPS were the control of acute bleeding (42.6%) and the prevention of rebleeding (40.7%). 48.1% of the teams carried out early or priority TIPS, 53.0% of the teams carried out TIPS for the cavernous transformation of the portal vein, and 81.0% chose routine embolization of collateral circulation during operation. Most of them used coils and biological glue as embolic materials, and 78.5% of the team routinely performed intraoperative portal pressure gradient measurements. In selecting TIPS stents, 57.1% of the hospitals woulel choose Viator-specific stents, 57.2% woulel choose conventional anticoagulation after TIPS, and the duration of anticoagulation was between 3-6 months (55.4%). The limitation of TIPS surgery was mainly due to cost (72.3%) and insufficient understanding of doctors in related departments (77.4%). Most teams accepted the domestic instruments used in TIPS (92.7%).Conclusions:This survey shows that TIPS treatment is an essential part of treating portal hypertension in China. The total number of TIPS cases is far from that of patients with portal hypertension. In the future, it is still necessary to popularize TIPS technology and further standardize surgical indications, routine operations, and instrument application.


Result Analysis
Print
Save
E-mail