1.Comparative study of MS-39, Sirius, and Pentacam in assisting size selection of implantable collamer lens
Jiaqi YUE ; Xindi WANG ; Yimeng FAN ; Zhao LIU ; Cheng PEI
International Eye Science 2025;25(9):1505-1510
AIM: To assess the consistency of the new anterior segment analyzer, MS-39, the Sirius and Pentacam in measuring corneal white-to-white(WTW)and central anterior chamber depth(ACD), and to compare their differences in guiding implantable collamer lens(ICL)size selection.METHODS: Retrospective case study. A total of 210 consecutive patients(420 eyes)who treated at the Ophthalmology Refractive Surgery Center of the First Affiliated Hospital of Xi'an Jiaotong University between September 2019 and September 2020 were enrolled. Three anterior segment analysis systems, MS-39, Sirius, and Pentacam, were utilized to assess the WTW and ACD, with comparative analysis of the results. The sizing of the ICL V4c was simulated using the method recommended by the STAAR company. Data correlation and consistency were evaluated.RESULTS: The WTW measurement results obtained from MS-39, Sirius, and Pentacam were 11.39±0.35, 11.42±0.36, and 11.46±0.35 mm, respectively. Notably, the WTW measurement value from MS-39 was significantly lower than that from Pentacam(P=0.002), while no statistically significant differences were observed between MS-39 and Sirius, or between Sirius and Pentacam(all P>0.05). The WTW measurements from the three devices exhibited a strong positive correlation, with correlation coefficients(r)of 0.942 between MS-39 and Sirius, 0.925 between MS-39 and Pentacam, and 0.882 between Sirius and Pentacam(all P<0.0001). The ACD measurements values from the MS-39, Sirius and Pentacam were 3.28±0.22, 3.28±0.24, and 3.21±0.23 mm, respectively. While, no statistically significant difference was found between MS-39 and Sirius(P>0.05), both measurements were significantly higher than that of Pentacam(both P<0.0001). The ACD measurements also demonstrated a strong positive correlation, with r values of 0.959 between MS-39 and Sirius, 0.947 between MS-39 and Pentacam, and 0.932 between Sirius and Pentacam(all P<0.0001). In terms of ICL size selection based on the measurements from the three devices, the 12.6 mm size was the most frequently selected, while the 13.7 mm size was the least common, the distribution of size selections across the devices was similar.CONCLUSION: MS-39 demonstrated strong positive correlation with both Sirius and Pentacam for WTW and ACD measurements, indicating that the results can be considered clinically interchangeable. Furthermore, the outcomes derived from MS-39 for ICL size selection were closely aligned with those from Sirius and Pentacam, suggesting its clinical feasibility.
2.Erratum: Author correction to "PRMT6 promotes tumorigenicity and cisplatin response of lung cancer through triggering 6PGD/ENO1 mediated cell metabolism" Acta Pharm Sin B 13 (2023) 157-173.
Mingming SUN ; Leilei LI ; Yujia NIU ; Yingzhi WANG ; Qi YAN ; Fei XIE ; Yaya QIAO ; Jiaqi SONG ; Huanran SUN ; Zhen LI ; Sizhen LAI ; Hongkai CHANG ; Han ZHANG ; Jiyan WANG ; Chenxin YANG ; Huifang ZHAO ; Junzhen TAN ; Yanping LI ; Shuangping LIU ; Bin LU ; Min LIU ; Guangyao KONG ; Yujun ZHAO ; Chunze ZHANG ; Shu-Hai LIN ; Cheng LUO ; Shuai ZHANG ; Changliang SHAN
Acta Pharmaceutica Sinica B 2025;15(4):2297-2299
[This corrects the article DOI: 10.1016/j.apsb.2022.05.019.].
3.Amyloid-like fibrils derived from β-sheets of gp120 contribute to the neuronal pathology of HIV-associated neurocognitive disorders.
Chan YANG ; Ruyu WANG ; Chen CHENG ; Jiaqi YU ; Kunyu LU ; Haobin LI ; Jinshen WANG ; Guodong HU ; Hao YANG ; Jianfu HE ; Hao SU ; Qingping ZHAN ; Suiyi TAN ; Tong ZHANG ; Shuwen LIU
Acta Pharmaceutica Sinica B 2025;15(4):2273-2277
4.COMPERA 2.0 risk stratification in patients with severe aortic stenosis: implication for group 2 pulmonary hypertension.
Zongye CAI ; Xinrui QI ; Dao ZHOU ; Hanyi DAI ; Abuduwufuer YIDILISI ; Ming ZHONG ; Lin DENG ; Yuchao GUO ; Jiaqi FAN ; Qifeng ZHU ; Yuxin HE ; Cheng LI ; Xianbao LIU ; Jian'an WANG
Journal of Zhejiang University. Science. B 2025;26(11):1076-1085
COMPERA 2.0 risk stratification has been demonstrated to be useful in patients with precapillary pulmonary hypertension (PH). However, its suitability for patients at risk for post-capillary PH or PH associated with left heart disease (PH-LHD) is unclear. To investigate the use of COMPERA 2.0 in patients with severe aortic stenosis (SAS) undergoing transcatheter aortic valve replacement (TAVR), who are at risk for post-capillary PH, a total of 327 eligible SAS patients undergoing TAVR at our institution between September 2015 and November 2020 were included in the study. Patients were classified into four strata before and after TAVR using the COMPERA 2.0 risk score. The primary endpoint was all-cause mortality. Survival analysis was performed using Kaplan-Meier curves, log-rank test, and Cox proportional hazards regression model. The study cohort had a median (interquartile range) age of 76 (70‒80) years and a pulmonary arterial systolic pressure of 33 (27‒43) mmHg (1 mmHg=0.133 kPa) before TAVR. The overall mortality was 11.9% during 26 (15‒47) months of follow-up. Before TAVR, cumulative mortality was higher with an increase in the risk stratum level (log-rank, both P<0.001); each increase in the risk stratum level resulted in an increased risk of death (hazard ratio (HR) 2.53, 95% confidential interval (CI) 1.54‒4.18, P<0.001), which was independent of age, sex, estimated glomerular filtration rate (eGFR), hemoglobin, albumin, and valve type (HR 1.76, 95% CI 1.01‒3.07, P=0.047). Similar results were observed at 30 d after TAVR. COMPERA 2.0 can serve as a useful tool for risk stratification in patients with SAS undergoing TAVR, indicating its potential application in the management of PH-LHD. Further validation is needed in patients with confirmed post-capillary PH by right heart catheterization.
Humans
;
Aortic Valve Stenosis/complications*
;
Aged
;
Hypertension, Pulmonary/mortality*
;
Male
;
Female
;
Transcatheter Aortic Valve Replacement
;
Aged, 80 and over
;
Risk Assessment/methods*
;
Proportional Hazards Models
;
Kaplan-Meier Estimate
;
Retrospective Studies
5.Proteomic characteristics and functional regulation of vesicle subtypes in apheresis platelets
Hong CHENG ; Zuojian HU ; Jiaqi WANG ; Dandan LI ; Zhicheng WANG ; Rong XIA
Chinese Journal of Blood Transfusion 2025;38(10):1299-1306
Objective: To detect the different proteomic characteristics of microvesicles (MVs) and exosomes (EXOs) released from apheresis platelets during storage, and to explore their role in mediating platelet storage damage lesion (PSL). Methods: Apheresis platelets were collected from the retention bag on the third day of storage. MVs and EXOs were isolated using differential centrifugation. Platelet, MVs and EXOs protein samples were extracted respectively, and the differentially expressed proteins were detected by quantitative proteomics technology. Further, the co-incubation model of MVs, EXOs and fresh platelets was adopted to evaluate the effect of extracellular vesicles on PSL. The aggregation response of platelets to collagen agonizers and the changes in ATP release rate were evaluated by optical turbidimetry. Flow cytometry was used to evaluate the changes of platelet early activation indicators (P-selectin and PAC-1) and mitochondrial membrane potentia. Western blot was used to detect the changes in the expression of key proteins for platelet activation and apoptosis (P-selectin, Integrin β3 and Bcl-xl). Results: Proteomic analysis revealed a significantly separation in protein expression profiles of platelet, MVs and EXOs samples within the latent variable space. Energy metabolization-related proteins such as mitochondrial respiratory chain complex and oxidative phosphorylation were enriched specifically, in MVs while EXOs were enriched with inflammation-related proteins. Co-incubation experiments confirmed that extracellular vesicles could significantly induce platelet responses to agonists (the maximum aggregation rate in the MVs group increased by 187.36%, P<0.001; 71.26%, in the EXOs group P=0.002). The maximum ATP release rate of platelets also increased (275.44% in the MVs group, P<0.001; 70.18% in the EXOs group, P=0.015). The expression of P-selectin increased (119.33% in the MVs group, P<0.001; 25.61% in the EXOs group, P=0.013), as detected by flow cytometry. The binding rate of PAC-1 increased (132.18% in MVs group, P<0.001; 21.41% in EXOs group, P=0.043), and the mitochondrial membrane potential decreased (20.49% in MVs group, P<0.001; 9.73% in EXOs group, P=0.044). In the MVs group, platelet P-selectin and Integrin β3 expression were significantly increased (100.83% and 395.64%, P<0.001), while Bcl-xl expression was lower than that in the control group (83.94%, P<0.001). Compared with the control group, P-selectin and Integrin β3 expression were also increased (27.89% and 181.91%, P=0.007和P=0.002), while Bcl-xl was decreased in the EXOs group (36.52%, P<0.001). Conclusion: MVs and EXOs derived from stored platelets show different proteomic characteristics. Compared with EXOs, MVs exhibits a stronger effect in inducing mitochondrial dysfunction. Mvs also promots PSL responses including platelet activation and apoptosis.
6.Three-dimensional breast cancer tumor models based on natural hydrogels:a review
SHU YAN ; LI BING ; MA HAILIN ; LIU JIAQI ; CHENG Yee YUEN ; LI XIANGQIN ; LIU TIANQING ; YANG CHUWEI ; MA XIAO ; SONG KEDONG
Journal of Zhejiang University. Science. B 2024;25(9):736-755
Breast cancer is the most common cancer in women and one of the deadliest cancers worldwide.According to the distribution of tumor tissue,breast cancer can be divided into invasive and non-invasive forms.The cancer cells in invasive breast cancer pass through the breast and through the immune system or systemic circulation to different parts of the body,forming metastatic breast cancer.Drug resistance and distant metastasis are the main causes of death from breast cancer.Research on breast cancer has attracted extensive attention from researchers.In vitro construction of tumor models by tissue engineering methods is a common tool for studying cancer mechanisms and anticancer drug screening.The tumor microenvironment consists of cancer cells and various types of stromal cells,including fibroblasts,endothelial cells,mesenchymal cells,and immune cells embedded in the extracellular matrix.The extracellular matrix contains fibrin proteins(such as types Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅵ,and Ⅹcollagen and elastin)and glycoproteins(such as proteoglycan,laminin,and fibronectin),which are involved in cell signaling and binding of growth factors.The current traditional two-dimensional(2D)tumor models are limited by the growth environment and often cannot accurately reproduce the heterogeneity and complexity of tumor tissues in vivo.Therefore,in recent years,research on three-dimensional(3D)tumor models has gradually increased,especially 3D bioprinting models with high precision and repeatability.Compared with a 2D model,the 3D environment can better simulate the complex extracellular matrix components and structures in the tumor microenvironment.Three-dimensional models are often used as a bridge between 2D cellular level experiments and animal experiments.Acellular matrix,gelatin,sodium alginate,and other natural materials are widely used in the construction of tumor models because of their excellent biocompatibility and non-immune rejection.Here,we review various natural scaffold materials and construction methods involved in 3D tissue-engineered tumor models,as a reference for research in the field of breast cancer.
7.Low-dose ketamine attenuates microcirculatory deficits after traumatic brain injury in mice via microglial NF-κB/iNOS pathway
Guodong ZHANG ; Feng HE ; Yuanchao LI ; Gang ZHAO ; Jiaqi ZHANG ; Fengjie GUO ; Zhenguo CHENG
Chinese Journal of Neuromedicine 2024;23(1):10-17
Objective:To investigate the effect of low-dose ketamine on neuroinflammation and microcirculation in mice with traumatic brain injury (TBI).Methods:Sixty adult male C57BL/6 mice, weighing 22-28 g, were randomly divided into sham-operated group, TBI group, Sham+ketamine group, and TBI+ketamine group ( n=15). A controlled cortical impingement (CCI) method was used to establish TBI models in the later 2 groups. Sham+ketamine group and TBI+ketamine group were intraperitoneally injected with 30 mg/kg ketamine once daily for 3 d at 30 min after TBI; sham-operated group and TBI group were intraperitoneally injected same amount of saline at the same time points. Cerebral cortical blood flow in 6 mice from each group was measured by laser speckle contrast imaging (LSCI) before, immediately after, 30 min after, 1 d after and 3 d after modeling, respectively. Three d after modeling, immunohistochemical staining and immunofluorescent double label staining were used to detect the nuclear translocation of microglia markers, ionized calcin-antibody-1 (Iba-1) and nuclear factor (NF)-κB p65 in damaged cortical brain tissues in 6 mice from each group. The remaining 3 mice in each group were sacrificed and tissue plasma was extracted 3 d after modeling; levels of NF-κB p65, phosphorylated (p)-NF-κB p65, p-IκB and inducible nitric oxide synthase (iNOS) in cortical brain tissues were detected by Western blotting. Expressions of tumor necrosis factor-α (TNF-α), interleukin-1-β (IL-1β) and interleukin-6 (IL-6), iNOS, reactive oxygen species (ROS) and reactive nitrogen species (RNS) in cortical brain tissues were detected by ELISA. Results:LSCI indicated that, 3 d after modeling, relative blood flow in local cerebral microcirculation of TBI+ketamine group was significantly increased compared with that of TBI group ( P<0.05). Immunohistochemical staining indicated that compared with the sham-operated group and Sham+ketamine group, the TBI group and TBI+ketamine group had significantly increased number of Iba-1 positive cells in the cerebral cortex ( P<0.05); compared with the TBI group, the TBI+ketamine group had significantly decreased number of Iba-1 positive cells ( P<0.05). ELISA indicated that compared with the sham-operated group and Sham+ketamine group, the TBI group and TBI+ketamine group had significantly increased expressions of TNF-α, IL-1β, IL-6, iNOS, ROS and RNS in damaged cortical brain tissues ( P<0.05); compared with the TBI group, the TBI+ ketamine group had significantly decreased expressions of TNF-α, IL-1β, IL-6, iNOS, ROS and RNS in damaged cortical brain tissues ( P<0.05). Immunofluorescent double label staining indicated obviously inhibited NF-κB p65 nuclear translocation in TBI+ketamine group when it was compared with TBI group. Western blotting indicated that compared with the sham-operated group and Sham+ketamine group, the TBI+ketamine group had significantly increased iNOS, NF-κB p65, p-NF-κB p65 and P-IκB protein expressions in damaged cortical brain tissues ( P<0.05); compared with the TBI group, the TBI+ketamine group had significantly decreased protein expressions of iNOS, NF-κB p65, p-NF-κB p65 and p-IκB in damaged cortical brain tissues ( P<0.05). Conclusion:Low-dose ketamine reduces neuroinflammation and improves cerebral microcirculatory blood flow after open TBI, whose mechanism may be related to inhibition of microglia NF-κB/iNOS pathway.
8.Application value of CT radiomics in differentiating malignant and benign sub-centimeter solid pulmonary nodules
Jianing LIU ; Linlin QI ; Jiaqi CHEN ; Fenglan LI ; Shulei CUI ; Sainan CHENG ; Yawen WANG ; Zhen ZHOU ; Jianwei WANG
Chinese Journal of Radiological Health 2024;33(3):340-345
Objective To investigate the application efficiency and potential of CT radiomics in differentiating malignant and benign sub-centimeter solid pulmonary nodules. Methods A retrospective study was performed on the sub-centimeter ( ≤ 10 mm) solid pulmonary nodules detected by enhanced CT in our hospital from March 2020 to January 2023. Malignancy was confirmed by surgical pathology, and benignity was confirmed by surgical pathology or follow-up. Lesions were manually segmented and radiomic features were extracted. The feature dimension was reduced via feature correlation analysis and least absolute shrinkage and selection operator (LASSO). The 5-fold cross validation was used to validate the model. Support vector machine, logistic regression, linear classification support vector machine, gradient boosting, and random forest models were established for CT radiomics. Receiver operating characteristic curves were drawn. Delong test was used to compare the diagnostic performance of the five classifiers. The optimal model was selected and compared to radiologists with medium and high seniority. Results A total of 303 nodules, 136 of which were malignant, were examined. Radiomics models were established after feature extraction and selection. On test set, the areas under the receiver operating characteristic curves of support vector machine, logistic regression, linear classification support vector machine, random forest, and gradient boosting models were 0.922 (95%CI: 0.893, 0.950), 0.910 (95%CI: 0.878, 0.942), 0.905 (95%CI: 0.872, 0.938), 0.899 (95%CI: 0.865, 0.933), and 0.896 (95%CI: 0.862, 0.930), respectively. Delong test indicated no significant differences in the performance of the five radiomics models, and the support vector machine model showed the highest accuracy and F1 score. The support vector machine model showed significantly higher diagnostic accuracy as compared to radiologists (83.8% vs. 55.4%, P < 0.001). Conclusion The radiomics models achieved high diagnostic efficiency and may help to reduce the uncertainty in diagnosis of malignant and benign sub-centimeter solid nodules by radiologists.
9.A novel approach for assessing quality of electrocardiogram signal by integrating multi-scale temporal features.
Cheng CHEN ; Aihua ZHANG ; Yurun MA ; Yusheng QI ; Jiaqi LI
Journal of Biomedical Engineering 2024;41(6):1169-1176
During long-term electrocardiogram (ECG) monitoring, various types of noise inevitably become mixed with the signal, potentially hindering doctors' ability to accurately assess and interpret patient data. Therefore, evaluating the quality of ECG signals before conducting analysis and diagnosis is crucial. This paper addresses the limitations of existing ECG signal quality assessment methods, particularly their insufficient focus on the 12-lead multi-scale correlation. We propose a novel ECG signal quality assessment method that integrates a convolutional neural network (CNN) with a squeeze and excitation residual network (SE-ResNet). This approach not only captures both local and global features of ECG time series but also emphasizes the spatial correlation among ECG signals. Testing on a public dataset demonstrated that our method achieved an accuracy of 99.5%, sensitivity of 98.5%, and specificity of 99.6%. Compared with other methods, our technique significantly enhances the accuracy of ECG signal quality assessment by leveraging inter-lead correlation information, which is expected to advance the development of intelligent ECG monitoring and diagnostic technology.
Electrocardiography/methods*
;
Humans
;
Signal Processing, Computer-Assisted
;
Neural Networks, Computer
;
Algorithms
10.PRMT6 promotes tumorigenicity and cisplatin response of lung cancer through triggering 6PGD/ENO1 mediated cell metabolism.
Mingming SUN ; Leilei LI ; Yujia NIU ; Yingzhi WANG ; Qi YAN ; Fei XIE ; Yaya QIAO ; Jiaqi SONG ; Huanran SUN ; Zhen LI ; Sizhen LAI ; Hongkai CHANG ; Han ZHANG ; Jiyan WANG ; Chenxin YANG ; Huifang ZHAO ; Junzhen TAN ; Yanping LI ; Shuangping LIU ; Bin LU ; Min LIU ; Guangyao KONG ; Yujun ZHAO ; Chunze ZHANG ; Shu-Hai LIN ; Cheng LUO ; Shuai ZHANG ; Changliang SHAN
Acta Pharmaceutica Sinica B 2023;13(1):157-173
Metabolic reprogramming is a hallmark of cancer, including lung cancer. However, the exact underlying mechanism and therapeutic potential are largely unknown. Here we report that protein arginine methyltransferase 6 (PRMT6) is highly expressed in lung cancer and is required for cell metabolism, tumorigenicity, and cisplatin response of lung cancer. PRMT6 regulated the oxidative pentose phosphate pathway (PPP) flux and glycolysis pathway in human lung cancer by increasing the activity of 6-phospho-gluconate dehydrogenase (6PGD) and α-enolase (ENO1). Furthermore, PRMT6 methylated R324 of 6PGD to enhancing its activity; while methylation at R9 and R372 of ENO1 promotes formation of active ENO1 dimers and 2-phosphoglycerate (2-PG) binding to ENO1, respectively. Lastly, targeting PRMT6 blocked the oxidative PPP flux, glycolysis pathway, and tumor growth, as well as enhanced the anti-tumor effects of cisplatin in lung cancer. Together, this study demonstrates that PRMT6 acts as a post-translational modification (PTM) regulator of glucose metabolism, which leads to the pathogenesis of lung cancer. It was proven that the PRMT6-6PGD/ENO1 regulatory axis is an important determinant of carcinogenesis and may become a promising cancer therapeutic strategy.

Result Analysis
Print
Save
E-mail