1.Systematic review of risk predictive models for chemotherapy-induced myelosuppression in breast cancer
Yang LIU ; Hongjian LI ; Jianhua WU ; Xuetao LIU ; Min JIAO ; Luhai YU
China Pharmacy 2025;36(5):612-618
OBJECTIVE To systematically evaluate risk prediction models for chemotherapy-induced myelosuppression in breast cancer, and provide a scientific reference for clinical healthcare workers in selecting or developing effective predictive models. METHODS A systematic search was conducted for studies on predictive models of the risk of chemotherapy-induced myelosuppression in breast cancer across the CNKI, VIP, Wanfang, PubMed, Web of Science, Cochrane Library, Embase, and Scopus databases, with a time frame of the establishment of the database to May 7, 2024. Literature was independently screened by 2 investigators, data were extracted according to critical appraisal and data extraction for systematic reviews of predictive model studies, and the risk of bias evaluation tool for predictive model studies was used to analyze the risk of bias and applicability of the included studies. RESULTS There were totally 7 studies, comprising 12 models. Among them, 11 models indicated an area under the subject operating characteristic curve of 0.600-0.908; 2 models indicated calibration. The common predictor variables of the included models were age, pre-chemotherapy neutrophil count, pre-chemotherapy lymphocyte count, and pre-chemotherapy albumin. The overall risk of bias of the 7 studies was high, which was mainly attributed to the flaws in the study design, insufficient sample sizes, inappropriate treatment of variables, non-reporting of missing data, and the lack of indicators for the assessment of the models, but the applicability was good. CONCLUSIONS The predictive performance of risk predictive models for chemotherapy-induced myelosuppression in breast cancer remains to be further enhanced, and the overall risk of model bias is high. Future studies should follow the specifications of model development and reporting, then combine machine learning algorithms to develop risk predictive models with good predictive performance, high stability, and low risk of bias, so as to provide a decision-making basis for the clinic.
2.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
3.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
4.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
5.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
6.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
7.Construction of a predictive model for the efficacy of SNRI antidepressants in inpatients with moderate and severe depression based on machine learning
Xuetao LIU ; Yang LIU ; Hongjian LI ; Jianhua WU ; Siming LIU ; Ming JIAO ; Luhai YU
China Pharmacy 2025;36(15):1936-1941
OBJECTIVE To construct a prediction model for the efficacy of serotonin-norepinephrine reuptake inhibitor (SNRI) in inpatients with moderate and severe depression by using a machine learning method. METHODS The case records of inpatients with moderate and severe depression treated with SNRI antidepressants were collected from a third-grade class-A hospital in Xinjiang from January 2022 to October 2024; those patients were divided into effective group and ineffective group based on the Hamilton depression scale-24 score reduction rate. After screening the characteristic variables related to the therapeutic efficacy of SNRI drugs through LASSO regression, five prediction models including support vector machine, k-nearest neighbor, random forest, lightweight gradient boosting machine and extreme gradient boosting were constructed using the training set. Bayesian optimization was used to adjust the hyperparameters of these models. The performance of the models was evaluated in the validation set to select the optimal model. The Shapley additive explanations method was used to perform explainable analysis on the best model. RESULTS The medical records from 355 hospitalized patients with moderate and severe depression were collected, comprising 285 cases in the effective group and 70 cases in the ineffective group, resulting in an overall therapeutic response rate of 80.28%. After feature variable screening, five characteristic variables for therapeutic efficacy were obtained, including Hamilton anxiety scale, blood urea nitrogen, combination of anti-anxiety drugs, drinking history, and first onset of the disease. Compared with other models, the random forest model performed the best. The area under the receiver operating characteristic curve was 0.85, the area under the precision-recall curve was 0.87, the accuracy was 0.74, and the recall rate value was 0.75. CONCLUSIONS The random forest model constructed based on five characteristic variables demonstrates potential for predicting the therapeutic efficacy of SNRI antidepressants in hospitalized patients with moderate and severe depression.
8.Establishment and application of key technologies for periodontal tissue regeneration based on microenvironment and stem cell regulation.
Baojin MA ; Jianhua LI ; Yuanhua SANG ; Yang YU ; Jichuan QIU ; Jinlong SHAO ; Kai LI ; Shiyue LIU ; Mi DU ; Lingling SHANG ; Shaohua GE
Journal of Peking University(Health Sciences) 2025;57(5):841-846
The prevalence of periodontitis in China is as high as 74.2%, making it the leading cause of tooth loss in adults and severely impacting both oral and overall health. The treatment of periodontitis and periodontal tissue regeneration are global challenges of significant concern. GE Shaohua' s group at School and Hospital of Stomatology, Shandong University has focused on the key scientific issue of "remodeling the periodontal inflammatory microenvironment and optimizing tissue repair and regeneration". They have elucidated the mechanisms underlying the persistence of periodontitis, developed bioactive materials to enhance stem cell regenerative properties, and constructed a series of guided tissue regeneration barrier membranes to promote periodontal tissue repair, leading to the establishment of a comprehensive technology system for the treatment of periodontitis. Specific achievements and progress include: (1) Elucidating the mechanism by which key periodontal pathogens evade antimicrobial autophagy, leading to inflammatory damage; developing intelligent antimicrobial hydrogels and nanosystems, and creating metal-polyphenol network microsphere capsules to reshape the periodontal inflammatory microenvironment; (2) Explaining the mechanisms by which nanomaterial structures and electroactive interfaces regulate stem cell behavior, developing optimized nanostructures and electroactive biomaterials, thereby effectively enhancing the regenerative repair capabilities of stem cells; (3) Creating a series of biphasic heterogeneous barrier membranes, refining guided tissue regeneration and in situ tissue engineering techniques, stimulating the body' s intrinsic repair potential, and synergistically promoting the structural regeneration and functional reconstruction of periodontal tissues. The research outcomes of the group have innovated the fundamental theories of periodontal tissue regeneration, broken through foreign technological barriers and patent blockades, established a cascade repair strategy for periodontal regeneration, and enhanced China' s core competitiveness in the field of periodontal tissue regeneration.
Humans
;
Stem Cells/physiology*
;
Periodontitis/therapy*
;
Guided Tissue Regeneration, Periodontal/methods*
;
Regeneration
;
Biocompatible Materials
;
Tissue Engineering/methods*
9.Effects of insulin combined with metformin on maternal and neonatal outcomes in the treatment of gestational diabetes mellitus in China:A meta-analysis
Jianhua CHEN ; Zhenqiu HUANG ; Jing WEN ; Chunlei YU
Journal of Shenyang Medical College 2024;26(3):292-298
Objective:To systematically evaluate the effects of insulin combined with metformin in the treatment of gestational diabetes mellitus(GDM)on maternal and neonatal outcomes in China,in order to provide evidence-based medical recommendations for clinical treatment.Methods:The Chinese Academic Database(CNKI),VIP Database,and Wanfang Database were searched from the establishment of the database to April 2022 for randomized controlled trials(RCTs)of insulin combined with metformin versus insulin alone in the treatment of GDM to observe the adverse outcomes for neonates.The Cochrane Collaboration was used for quality evaluation and Review Manager 5.4 software was utilized for meta-analysis.Results:A total of 51 studies were included in the meta-analysis,including 4 916 GDM patients,with 2 460 cases in the combined treatment group and 2 456 cases in insulin alone group.The meta-analysis results revealed significant reductions in rates of cesarean section(OR=0.32,95%CI:0.26-0.39),preterm birth(OR=0.26,95%CI:0.20-0.34),polyhydramnios(OR=0.27,95%CI:0.20-0.36),gestational hypertension(OR=0.25,95%CI:0.18-0.35),neonatal jaundice(OR=0.25,95%CI:0.19-0.32),neonatal hypoglycemia(OR=0.33,95%CI:0.25-0.45),macrosomia(OR=0.23,95%CI:0.17-0.30),and neonatal respiratory distress(OR=0.23,95%CI:0.16-0.34)in the combined treatment group than those in the control group(P<0.01).Conclusions:For patients with GDM,insulin combined with metformin is significantly more effective than insulin alone in reducing the incidence of maternal and neonatal complications.This combination therapy results in improved outcomes for both mothers and infants.
10.Research progress on molecular mechanism and treatment for anaplastic thyroid carcinoma
You LI ; Hongpeng GUO ; Yitong ZHANG ; Junliang LIU ; Jianhua YU ; Jinhui ZHANG ; Chenglin SUN
Journal of Shenyang Medical College 2024;26(3):309-315
Anaplastic thyroid carcinoma(ATC)is the most aggressive malignancy with poor prognosis.The pathogenesis of ATC is complex,and there is no effective treatment at present.In recent years,with the deep understanding of the genetic(such as BRAF V600E,TP53,TERT,PIK3CA mutations,etc.)and epigenetic(such as histone methylation,histone deacetylation,microRNA regulatory pathways,etc.)changes driving ATC,molecular targeted therapy has brought new hope to ATC patients.This article reviews the molecular mechanisms of ATC and the latest achievements in targeted therapy and other therapies.

Result Analysis
Print
Save
E-mail