1.Study on distribution characteristics of pressure-sensitive points on body surface around acupoints in patients with chronic non-specific low back pain based on Euclidean distance.
Dong LIN ; Shiyi QI ; Youcong NI ; Xin DU ; Zijuan HUANG ; Xiang ZHAO ; Jianguo CHEN ; Lili LIN
Chinese Acupuncture & Moxibustion 2025;45(12):1743-1750
OBJECTIVE:
To explore the pain-location interaction between pressure-sensitive points on the body surface and traditional acupoints in patients with chronic non-specific low back pain (CNLBP) under different disease courses, using Euclidean distance and multivariate statistical analysis.
METHODS:
A pressure-sensitive point detection was performed on 30 CNLBP patients with varying disease courses. A constant pressure was applied using an FDK20 algometer within a designated lumbar area, a total of 50 points were tested, and the tested points were numbered; the visual analogue scale (VAS) pain score was recorded simultaneously. MatlabR2022a9.12. software was used to extract the positions of pressure-sensitive points, and preprocessing and normalization of point location and VAS scores data were conducted. Under constraint conditions (VAS≥8.0 ∩ Euclidean distance to acupoint≤0.5), the proportion of pressure-sensitive points within the Euclidean distance threshold to each acupoint (PVDacupoint) was calculated, followed by multivariate statistical analysis.
RESULTS:
①Constrained analysis of PVDacupoint showed that PVDQihaishu (BL24) and PVDDachangshu (BL25) were positively correlated with disease course (r=0.55, P<0.01). ②Factor analysis and silhouette analysis revealed that PVDShenshu (BL23) and PVDDachangshu (BL25) exhibited trends consistent with disease course progression (P>0.05), with different degree (P<0.01).
CONCLUSION
The PVDacupoint value based on Euclidean distance can characterize the pressure sensitivity features of traditional acupoints associated with disease. Multivariate statistical analysis of PVDacupoint confirms that selecting the acupoint combination of Shenshu (BL23) and Dachangshu (BL25) for CNLBP is associated with the distribution of surrounding pressure-sensitive points and the pathological characteristics of the condition.
Humans
;
Acupuncture Points
;
Low Back Pain/physiopathology*
;
Male
;
Female
;
Middle Aged
;
Adult
;
Aged
;
Acupuncture Therapy
;
Young Adult
;
Pressure
3.Diagnosis and treatment of colorectal liver metastases: Chinese expert consensus-based multidisciplinary team (2024 edition).
Wen ZHANG ; Xinyu BI ; Yongkun SUN ; Yuan TANG ; Haizhen LU ; Jun JIANG ; Haitao ZHOU ; Yue HAN ; Min YANG ; Xiao CHEN ; Zhen HUANG ; Weihua LI ; Zhiyu LI ; Yufei LU ; Kun WANG ; Xiaobo YANG ; Jianguo ZHOU ; Wenyu ZHANG ; Muxing LI ; Yefan ZHANG ; Jianjun ZHAO ; Aiping ZHOU ; Jianqiang CAI
Chinese Medical Journal 2025;138(15):1765-1768
4.Nodakenin ameliorates TNBS-induced experimental colitis in mice by inhibiting pyroptosis of intestinal epithelial cells.
Ju HUANG ; Lixia YIN ; Minzhu NIU ; Zhijun GENG ; Lugen ZUO ; Jing LI ; Jianguo HU
Journal of Southern Medical University 2025;45(2):261-268
OBJECTIVES:
To investigate the therapeutic mechanism of nodakenin for Crohn's disease (CD)-like colitis in mice.
METHODS:
Using a colonic organoid model with lipopolysaccharide (LPS)- and ATP-induced pyroptosis, we investigated the effects of nodakenin on pyroptosis, intestinal barrier function and inflammatory response by detecting key pyroptosis-regulating factors and assessing changes in permeability and pro-inflammatory factors. In a mouse model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced CD-like colitis, the therapeutic effect of nodakenin was evaluated by measuring changes in body weight, DAI score, colonic histopathologies, inflammation score, intestinal barrier function and intestinal epithelial cell pyroptosis. The mechanism of nodakenin protection against pyroptosis of intestinal epithelial cells was explored using network pharmacology analysis and in vivo and in vitro experiments.
RESULTS:
In LPS- and ATP-induced colonic organoids, treatment with nodakenin significantly inhibited the expressions of NLRP3, GSDMD-N, cleaved caspase-1 and caspase-11, improved intestinal FITC-dextran (FD4, 4000) permeability, and decreased the levels of IL-1β and IL-18. In the mouse model of TNBS-induced colitis, nodakenin treatment significantly alleviated weight loss, reduced DAI score, inflammatory cell infiltration and inflammation score, and decreased serum FD4 and I-FABP levels and bacteria translocation to the mesenteric lymph nodes, spleen and liver. The mice with nodakenin treatment had also lowered expressions of NLRP3, GSDMD-N, cleaved caspase-1 and caspase-11 in the intestinal mucosa. Network pharmacology analysis suggested that the inhibitory effect of nodakenin on colitis was associated with the PI3K/Akt pathway. In both the colonic organoid model and mouse models of colitis, nodakenin effectively inhibited the activation of the PI3K/Akt pathway, and the application of IGF-1, a PI3K/Akt pathway activator, strongly attenuated the protective effect of nodakenin against intestinal epithelial cell pyroptosis and intestinal barrier dysfunction.
CONCLUSIONS
Nodakenin protects intestinal barrier function and alleviates CD-like colitis in mice at least partly by inhibiting PI3K/Akt signaling to reduce intestinal epithelial cell pyroptosis.
Animals
;
Pyroptosis/drug effects*
;
Mice
;
Trinitrobenzenesulfonic Acid
;
Colitis/drug therapy*
;
Epithelial Cells/drug effects*
;
Intestinal Mucosa/cytology*
;
Disease Models, Animal
;
Coumarins/pharmacology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Crohn Disease/drug therapy*
5.High MYO1B expression promotes proliferation, migration and invasion of gastric cancer cells and is associated with poor patient prognosis.
Qingqing HUANG ; Wenjing ZHANG ; Xiaofeng ZHANG ; Lian WANG ; Xue SONG ; Zhijun GENG ; Lugen ZUO ; Yueyue WANG ; Jing LI ; Jianguo HU
Journal of Southern Medical University 2025;45(3):622-631
OBJECTIVES:
To analyze MYO1B expression in gastric cancer, its association with long-term prognosis and its role in regulating biological behaviors of gastric cancer cells.
METHODS:
We analyzed MYO1B expression in gastric cancer and its correlation with tumor grade, tumor stage, and patient survival using the Cancer Public Database. We also examined MYO1B expression with immunohistochemistry in gastric cancer and paired adjacent tissues from 105 patients receiving radical surgery and analyzed its correlation with cancer progression and postoperative 5-year survival of the patients. GO and KEGG enrichment analyses were used to explore the biological functions of MYO1B and the key pathways. In cultured gastric cancer cells, we examined the changes in cell proliferation, migration and invasion following MYO1B overexpression and knockdown.
RESULTS:
Data from the Cancer Public Database showed that MYO1B expression was significantly higher in gastric cancer tissues than in normal tissues with strong correlations with tumor grade, stage and patient prognosis (P<0.05). In the clinical tissue samples, MYO1B was significantly overexpressed in gastric cancer tissues in positive correlation with Ki67 expression (r=0.689, P<0.05) and the parameters indicative of gastric cancer progression (CEA ≥5 μg/L, CA19-9 ≥37 kU/L, G3-4, T3-4, and N2-3) (P<0.05). Kaplan-Meier analysis and multivariate Cox regression analysis suggested that high MYO1B expression was associated with decreased postoperative 5-year survival and was an independent risk factor (HR: 3.522, 95%CI: 1.783-6.985, P<0.05). MYO1B expression level was a strong predictor of postoperative survival (cut-off value: 3.11, AUC: 0.753, P<0.05). GO and KEGG analyses suggested that MYO1B may regulate cell migration and the mTOR signaling pathway. In cultured gastric cancer cells, MYO1B overexpression significantly enhanced cell proliferation, migration, and invasion and promoted the phosphorylation of Akt and mTOR.
CONCLUSIONS
High MYO1B expression promotes proliferation, migration and invasion of gastric cancer cells and is correlated with poor patient prognosis.
Humans
;
Stomach Neoplasms/metabolism*
;
Cell Proliferation
;
Prognosis
;
Cell Movement
;
Myosin Type I/genetics*
;
Neoplasm Invasiveness
;
Cell Line, Tumor
;
Female
;
Male
6.Pinostrobin targets the PI3K/AKT/CCL2 axis in intestinal epithelial cells to inhibit intestinal macrophage infiltration and alleviate dextran sulfate sodium-induced colitis in mice.
Keni ZHANG ; Tong QIAO ; Lin YIN ; Ju HUANG ; Zhijun GENG ; Lugen ZUO ; Jianguo HU ; Jing LI
Journal of Southern Medical University 2025;45(10):2199-2209
OBJECTIVES:
To investigate the mechanism through which pinostrobin (PSB) alleviates dextran sulfate sodium (DSS)-induced colitis in mice.
METHODS:
C57BL/6 mice were randomized into control group, DSS model group, and PSB intervention (30, 60, and 120 mg/kg) groups. Colitis severity of the mice was assessed by examining body weight changes, disease activity index (DAI), colon length, and histopathology. The expressions of tight junction proteins ZO-1 and claudin-1 in the colon tissues were examined using immunofluorescence staining, and macrophage infiltration and polarization were analyzed with flow cytometry. ELISA and RT-qPCR were used for detecting the expressions of inflammatory factors (TNF‑α and IL-6) and chemokines (CCL2, CXCL10, and CX3CL1) in the colon tissues, and PI3K/AKT phosphorylation levels were analyzed with Western blotting. In cultured Caco-2 and RAW264.7 cells, the effect of PSB on CCL2-mediated macrophage migration was assessed using Transwell assay. Network pharmacology analysis was performed to predict the key pathways that mediate the therapeutic effect of PSB.
RESULTS:
In DSS-induced mouse models, PSB at 60 mg/kg optimally alleviated colitis, shown by reduced weight loss and DAI scores and increased colon length. PSB treatment significantly upregulated ZO-1 and claudin-1 expressions in the colon tissues, inhibited colonic macrophage infiltration, and promoted the shift of macrophage polarization from M1 to M2 type. In cultured intestinal epithelial cells, PSB significantly inhibited PI3K/AKT phosphorylation and suppressed chemokine CCL2 expression. PSB treatment obviously blocked CCL2-mediated macrophage migration of RAW264.7 cells, which could be reversed by exogenous CCL2. Network pharmacology analysis and rescue experiments confirmed PI3K/AKT and CCL2 signaling as the core targets of PSB.
CONCLUSIONS
PSB alleviates DSS-induced colitis in mice by targeting intestinal epithelial PI3K/AKT signaling, reducing CCL2 secretion, and blocking macrophage chemotaxis and migration, highlighting the potential of PSB as a novel natural compound for treatment of inflammatory bowel disease.
Animals
;
Mice
;
Mice, Inbred C57BL
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Colitis/drug therapy*
;
Dextran Sulfate
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Macrophages
;
Chemokine CCL2/metabolism*
;
Humans
;
Signal Transduction/drug effects*
;
Caco-2 Cells
;
RAW 264.7 Cells
;
Epithelial Cells/drug effects*
;
Intestinal Mucosa/metabolism*
7.Hypaphorine alleviates Crohn's disease-like colitis in mice by inhibiting intestinal epithelial inflammatory response and protecting intestinal barrier function.
Qingqing HUANG ; Jingjing YANG ; Xuening JIANG ; Wenjing ZHANG ; Yu WANG ; Lugen ZUO ; Lian WANG ; Yueyue WANG ; Xiaofeng ZHANG ; Xue SONG ; Jianguo HU
Journal of Southern Medical University 2025;45(11):2456-2465
OBJECTIVES:
To investigate the effect of hypaphorine (HYP) on Crohn's disease (CD)‑like colitis in mice and its molecular mechanism.
METHODS:
Thirty male C57BL/6J mice were equally randomized into WT, TNBS, and HYP groups, and in the latter two groups, mouse models of CD-like colitis were established using TNBS with daily gavage of 15 mg/kg HYP or an equivalent volume of saline. The treatment efficacy was evaluated by assessing the disease activity index (DAI), body weight changes, colon length and histopathology. The effect of HYP was also tested in a LPS-stimulated Caco-2 cell model mimicking intestinal inflammation by evaluating inflammatory responses and barrier function of the cells using qRT-PCR and immunofluorescence staining. GO and KEGG analyses were conducted to explore the therapeutic mechanism of HYP, which was validated in both the cell and mouse models using Western blotting.
RESULTS:
In the mouse models of CD-like colitis, HYP intervention obviously alleviated colitis as shown by significantly reduced body weight loss, colon shortening, DAI and inflammation scores, and expressions of pro-inflammatory factors in the colon tissues. HYP treatment also significantly increased the TEER values, reduced bacterial translocation to the mesenteric lymph nodes, liver, and spleen, lowered serum levels of I-FABP and FITC-dextran, increased the number of colonic tissue cup cells, and upregulated colonic expressions of MUC2 and tight junction proteins (claudin-1 and ZO-1) in the mouse models. In LPS-stimulated Caco-2 cells, HYP treatment significantly inhibited the expressions of pro-inflammatory factors and increased the expressions of tight junction proteins. Western blotting showed that HYP downregulated the expressions of the key proteins in the TLR4/MyD88 signaling pathway in both the in vitro and in vivo models.
CONCLUSIONS
HYP alleviates CD-like colitis in mice possibly by suppressing intestinal epithelial inflammation and improving gut barrier function.
Animals
;
Male
;
Mice, Inbred C57BL
;
Crohn Disease/drug therapy*
;
Mice
;
Humans
;
Caco-2 Cells
;
Intestinal Mucosa/metabolism*
;
Colitis/drug therapy*
;
Disease Models, Animal
;
Inflammation
;
Toll-Like Receptor 4/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Intestinal Barrier Function
8.Niranthin ameliorates Crohn's disease-like enteritis in mice by inhibiting intestinal epithelial cell apoptosis and protecting intestinal barrier via modulating p38/JNK signaling.
Lu TAO ; Yue CHEN ; Linlin HUANG ; Wang ZHENG ; Xue SONG ; Ping XIANG ; Jianguo HU
Journal of Southern Medical University 2025;45(11):2483-2495
OBJECTIVES:
To investigate the therapeutic effect of the natural compound niranthin on Crohn's disease-like colitis in mice and explore the underlying molecular mechanisms.
METHODS:
In a mouse model of colitis induced by 2,4,6-trinitro-benzenesulfonic acid (TNBS), the therapeutic effect of niranthin was evaluated by observing the changes in body weight, disease activity index (DAI), and colon length of the mice. The levels of inflammatory cytokines (IL-6, IL-1β, TNF-α, IL-17A and IL-10) in the intestinal mucosal tissue were detected using ELISA and quantitative real-time PCR (qRT-PCR). TUNEL staining and Western blotting were used to assess intestinal epithelial cell apoptosis and the expressions of Bcl-2 and Bax. The expression levels of tight junction proteins (ZO-1 and claudin-1) and the activation of the p38/JNK signaling pathway were investigated using Western blotting, and diprovocim intervention experiments were conducted to explore the molecular regulatory mechanism of niranthin.
RESULTS:
Niranthin treatment significantly increased body weight of TNBS-treated mice, lowered the DAI and histological inflammation scores, and increased colon length of the mice. The niranthin-treated mouse models showed obviously reduced protein and mRNA levels of IL-6, IL-1β, IL-17A, and TNF-α and upregulated expression of IL-10 in the colon tissue. TUNEL staining and Western blotting demonstrated that niranthin significantly inhibited intestinal epithelial cell apoptosis and activated the anti-apoptotic pathway in the mouse models. Niranthin treatment obviously upregulated the expression levels of ZO-1 and claudin-1 and downregulated the phosphorylation levels of p38 and JNK in the colon tissues of the mice. Diprovocim intervention obviously attenuated the inactivation of the p38/JNK signaling pathway induced by niranthin in the mouse models.
CONCLUSIONS
Niranthin ameliorates TNBS-induced Crohn's disease-like colitis in mice by inhibiting intestinal epithelial cell apoptosis and protecting the integrity of the intestinal barrier via regulating the activation of the p38/JNK signaling pathway.
Animals
;
Apoptosis/drug effects*
;
Mice
;
Intestinal Mucosa/drug effects*
;
Crohn Disease/drug therapy*
;
MAP Kinase Signaling System/drug effects*
;
Epithelial Cells/drug effects*
;
Disease Models, Animal
;
Signal Transduction/drug effects*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Male
9.Anti-fatigue activity of selenium nanoparticles functionalized by polysaccharides from Pleurotus tuber-regium sclerotium
Si ZOU ; Yanbin WU ; Jinzhong WU ; Jianguo WU ; Jiaxing HUANG
Journal of Pharmaceutical Practice and Service 2024;42(10):426-432
Objective To investigate the anti-fatigue effect of PTR-SeNPs in vivo by measuring the muscle relative length of hindlimb,load-bearing swimming time as well as serum and liver indexes of mice.Methods 48 male C57/BL6 mice were randomly assigned into 4 groups with 12 mice in each group,including vehicle control group(control group),swimming training exercise group(EC group)with vehicle treatment,swimming training exercise with low dose of PTR-SeNPs group(LPTR-SeNPs)and high dose of PTR-SeNPs group(HPTR-SeNPs).The mice were intragastrically administrated with normal saline in both control group and EC group,as well as 2.5 and 10 μmol/(kg·bw)PTR-SeNPs in LHPTR-SeNPs group,respectively,once per day for consecutively 21 days.After swimming training exercise,the muscle structures in the hind limb of mice were examined by magnetic resonance imaging.Furthermore,the burdened swimming time was measured,the serum content of blood lactic acid(BLA),urea nitrogen(BUN),alanine aminotransferase(ALT),glutamic oxalate aminotransferase(AST)and lactate dehydrogenase(LDH),as well as the hepatic level of glycogen(HG),malondialdehyde(MDA)and activity of catalase(CAT)and superoxide dismutase(SOD)were determined.Results Compared with the control group,the serum contents of BLA,BUN,ALT,AST and LDH in EC group(P<0.05 or P<0.01)and hepatic CAT in HPTR-SeNPs group(P<0.01)were significantly increased.The muscle relative length of hind limbs and the burdened swimming time were extended by HPTR-SeNPs markedly(P<0.05).There was no significant difference in MDA level in LHPTR-SeNPs group.Compared with EC group,the burdened swimming time of mice was significantly prolonged(P<0.01),the contents of BLA and BUN were obviously decreased in the HPTR-SeNPs group(P<0.05 or P<0.01),the level of HG was significantly increased in the LHPTR-SeNPs groups(P<0.05 or P<0.01),the serum content of ALT,AST and LDH were markedly decreased in the HPTR-SeNPs group(P<0.05 or P<0.01).Hepatic SOD activity was remarkably increased in LPTR-SeNPs group(P<0.05),the level of CAT was evidently increased(P<0.01)and AST was decreased(P<0.05)in the HPTR-SeNPs group.Conclusion PTR-SeNPs could improve the liver physiological function,increase glycogen storage,reduce the accumulation of metabolites and enhance the body's antioxidant capacity to ameliorate fatigue significantly,which could present the potential to be developed into health care products or drugs.
10.Bone defect blocked by bone cement segmental filling in single-plane tibial bone transport
Xiaowen ZHOU ; Zuchang FU ; Fei HUANG ; Jianguo AI ; Feng ZHAO
Chinese Journal of Tissue Engineering Research 2024;28(5):736-740
BACKGROUND:Bone transport has been used for a variety of reasons in bone defects with good clinical results.However,various complications have also attracted the attention of practitioners and the avoidance of non-healing of the docking point has become a common concern for doctors and patients. OBJECTIVE:To explore effective methods of avoiding non-healing of the docking point in the treatment of tibial bone defects by bone transport so as to shorten the treatment period and reduce the pain of patients. METHODS:The clinical data of 21 patients with unilateral tibial bone defect admitted to the No.910 Hospital of Joint Logistics Support Force of Chinese PLA from January 2018 to January 2021 were retrospectively analyzed,including 16 males and 5 females,aged(32.8±10.3)years,with an average bone defect length of 10.2 cm.All 21 patients received bone transport surgery,during which the bone defect area was filled with bone cement to reduce the adverse factors affecting the healing of the docking point.The Association for the Study and Application of the Methods of Ilizarov,healing index and incidence of adverse reactions were evaluated during postoperative follow-up. RESULTS AND CONCLUSION:The 21 patients were followed up for 15 to 24 months after surgery,and the extended area was all well mineralized and had no malformations,and no refractures occurred during treatment.Among them,one patient had foot drop,which could not be completely corrected after surgical release of the Achilles tendon and wearing foot and ankle orthotics.19 patients had different degrees of needle tract infection,and no deep infection occurred after timely needle tract nursing.The healing rate of the docking point was 100%;the healing index was 36-45 d/cm and the average was 38 d/cm.The Association for the Study and Application of the Methods of Ilizarov showed that bone healing was excellent in 17 cases(81%)and poor in 4 cases(19%).The results of limb function were excellent in 18 cases(86%)and good in 3 cases(14%).These findings show that bone cement segmental filling during bone transport is an effective method to solve the non-healing of the docking point,shorten the patient's treatment period and reduce the patient's pain.

Result Analysis
Print
Save
E-mail