1.SR9009 combined with indolepropionic acid alleviates inflammation in C2C12 myoblasts through the nuclear factor-kappa B signaling pathway
Huihui JI ; Xu JIANG ; Zhimin ZHANG ; Yunhong XING ; Liangliang WANG ; Na LI ; Yuting SONG ; Xuguang LUO ; Huilin CUI ; Ximei CAO
Chinese Journal of Tissue Engineering Research 2025;29(6):1220-1229
BACKGROUND:Rev-erbα is involved in the regulation of inflammation,but pharmacological activation of Rev-erbα increases the risk for cardiovascular diseases.To reduce the relevant risk,an exploration on SR9009,a Rev-erbα agonist,combined with other drugs to relieve inflammation in skeletal myoblasts was conducted,laying the theoretical foundation for the treatment of inflammation-associated skeletal muscle atrophy. OBJECTIVE:To investigate the relationship of SR9009,indolepropionic acid and nuclear factor-κB signaling pathways in lipopolysaccharide-induced C2C12 myoblasts. METHODS:(1)C2C12 myoblasts were induced to differentiate in the presence of lipopolysaccharide(1 μg/mL).RNA-seq and KEGG pathway analysis were used to study signaling pathways.(2)C2C12 myoblast viability was assessed using the cell counting kit-8 assay to determine optimal concentrations of indolepropionic acid.Subsequently,cells were categorized into control group,lipopolysaccharide(1 μg/mL)group,SR9009(10 μmol/L)+lipopolysaccharide group,indolepropionic acid(80μmol/L)+lipopolysaccharide group,and SR9009+indolepropionic acid+lipopolysaccharide group.ELISA was employed to measure protein expression levels of interleukin-6 in the cultured supernatant.Real-time quantitative PCR were employed to measure mRNA expression levels of interleukin-6,tumor necrosis factor α,TLR4 and CD14.Western blot assay were employed to measure protein expression levels of NF-κB p65 and p-NF-κB p65.(3)After Rev-erbα was knocked down by siRNA,knockdown efficiency was assessed by RT-qPCR.And mRNA levels of interleukin-6 and tumor necrosis factor α were also measured. RESULTS AND CONCLUSION:Compared with the blank control group,lipopolysaccharide time-dependently inhibited myofibroblast fusion to form myotubes,the mRNA expression levels of interleukin-6 and tumor necrosis factor α were elevated,and the level of interleukin-6 in the cell supernatant was significantly increased.The results of KEGG pathway showed that the nuclear factor-κB signaling pathway was activated by lipopolysaccharide.Indolepropionic acid exhibited significant suppression of C2C12 myoblasts viability when its concentration exceeded 80 μmol/L.Indolepropionic acid and SR9009 inhibited the activation of NF-κB signaling pathway,thereby played an anti-inflammatory role,and suppressed the mRNA expression levels of interleukin-6,tumor necrosis factor α,TLR4 and CD14.Compared with the lipopolysaccharide group,the ratio of p-NF-κB p65/NF-κB p65 protein expression were downregulated.SR9009 combined with indolepropionic acid notably reduced lipopolysaccharide-induced inflammation,further downregulated the mRNA expression levels of interleukin-6,tumor necrosis factor α,TLR4 and CD14.The ratio of p-NF-κB p65/NF-κB p65 protein expression was significantly lower than that in the SR9009+lipopolysaccharide group or indolepropionic acid+lipopolysaccharide group.Rev-erbα increases time-dependently with lipopolysaccharide induction.The knockdown efficiency of Rev-erbα by siRNA reached over 58%,and lipopolysaccharide was added after Rev-erbα was successfully knocked down.Compared with the lipopolysaccharide group,the mRNA expression levels of interleukin-6 and tumor necrosis factor α were significantly up-regulated.These results conclude that Rev-erbα may act as a promising pharmacological target to reduce inflammation.SR9009 targeted activation of Rev-erbα combined with indolepropionic acid significantly inhibits the nuclear factor-κB signaling pathway and attenuates the inflammatory response of C2C12 myofibroblasts.Moreover,the combined anti-inflammatory effect is superior to that of the intervention alone.
2.Decompression mechanism of symmetrically adduction of lumbar decompression induced resorption of herniated nucleus pulpous
Chunlin ZHANG ; Zhaohua HOU ; Xu YAN ; Yan JIANG ; Su FU ; Yongming NING ; Dongzhe LI ; Chao DONG ; Xiaokang LIU ; Yongkui WANG ; Zhengming CAO ; Tengyue YANG
Chinese Journal of Tissue Engineering Research 2025;29(9):1810-1819
BACKGROUND:Traditional surgery for lumbar disc herniation involves extensive excision of tissue surrounding the nerve for decompression and removal of protruding lumbar intervertebral discs,which poses various risks and complications such as nerve damage causing paralysis,lumbar instability,herniation recurrence,intervertebral space infection,and adjacent vertebral diseases. OBJECTIVE:To propose the symmetrically adduction of lumbar decompression induced resorption of herniated nucleus pulpous technique for lumbar spine symmetrically decompression,showing the induced resorption of herniated nucleus pulpous phenomenon and early clinical efficacy,and then analyze its decompression mechanism. METHODS:214 patients with lumbar disc herniation at Department of Orthopedics,First Affiliated Hospital of Zhengzhou University from March 2021 to May 2023 were enrolled in this study.Among them,81 patients received conservative treatment as the control group,and 133 patients received symmetrically adduction of lumbar decompression induced resorption of herniated nucleus pulpous treatment as the trial group.Before surgery,immediately after surgery(7-14 days),and early after surgery(over 1 year),MRI images were used to measure the volume changes of lumbar disc herniation.CT images were used to measure the posterior displacement distance of the lumbar spinous process ligament complex,as well as the width and height of the lateral recess.Japanese Orthopaedic Association scores were used to evaluate the patient's neurological function recovery. RESULTS AND CONCLUSION:(1)Control group:81 patients with lumbar disc herniation were treated conservatively,with a total of 171 herniated lumbar discs.The average follow-up time was(22.7±23.1)months.The first and second MRI measurements of 171 herniated lumbar discs showed herniated lumbar disc volumes of(551.6±257.9)mm3 and(792.2±330.4)mm3,respectively,with an average volume increase rate of(53.2±44.4)%,showing statistically significant differences(P<0.001).Out of 171 herniated lumbar discs,4 experienced natural shrinkage,with an absorption ratio of 2.3%(4/171)and an absorption rate of(24.5±9.9)%.(2)Trial group:133 patients with lumbar disc herniation had a total of 285 herniated lumbar discs.(1)Immediately after surgery:All patients were followed up immediately after surgery.229 out of 285 herniated lumbar discs experienced retraction,with an absorption ratio of 80.3%(229/285)and an average absorption rate of(21.5±20.9)%,with significant and complete absorption accounting for 6.5%.There were a total of 70 herniated lumbar discs in the upper lumbar spine,with an absorption ratio of 85.7%(60/70),an average absorption rate of(23.1±19.5)%,and a maximum absorption rate of 86.6%.There were 215 herniated lumbar discs in the lower lumbar spine,with an absorption ratio of 78.6%(169/215),an average absorption rate of(21.0±21.3)%,and a maximum absorption rate of 83.2%.Significant and complete absorption of the upper and lower lumbar vertebrae accounted for 5.7%and 6.5%,respectively,with no statistically significant difference(P>0.05).The average distance of posterior displacement of the spinous process ligament complex immediately after surgery was(5.2±2.8)mm.There were no significant differences in the width and height of the left and right lateral recess before and immediately after surgery(P>0.05).The Japanese Orthopaedic Association score immediately after surgery increased from(10.1±3.4)before surgery to(17.0±4.8),and the immediate effective rate after surgery reached 95.6%.(2)Early postoperative period:Among them,46 patients completed the early postoperative follow-up.There were 101 herniated lumbar discs,with an absorption ratio of 94%(95/101)and an average absorption rate of(36.9±23.7)%.Significant and complete absorption accounted for 30.6%,with a maximum absorption rate of 100%.Out of 101 herniated lumbar discs,3 remained unchanged in volume,with a volume invariance rate of 2.97%(3/101).Out of 101 herniated lumbar discs,3 had an increased volume of herniated lumbar discs,with an increase ratio of 2.97%(3/101)and an increase rate of(18.5±18.4)%.The Japanese Orthopaedic Association score increased from preoperative(9.3±5.1)to(23.5±4.0),with an excellent and good rate of 93.4%.(3)The early postoperative lumbar disc herniation absorption ratios of the control group and trial group were 2.3%and 85.9%,respectively,with statistically significant differences(P<0.001).(4)Complications:There were two cases of incision exudation and delayed healing in the trial group.After conservative treatment such as dressing change,no nerve injury or death occurred in the incision healing,and no cases underwent a second surgery.(5)It is concluded that symmetrically adduction of lumbar decompression induced resorption of herniated nucleus pulpous is a new method for treating lumbar disc herniation that can avoid extensive excision of the"ring"nerve and achieve satisfactory early clinical efficacy.It does not damage the lumbar facet joints or alter the basic anatomical structure of the lateral recess,fully preserves the herniated lumbar discs,and can induce significant or even complete induced resorption of herniated nucleus pulpous.Symmetrically adduction of lumbar decompression induced resorption of herniated nucleus pulpous provides a new basis and method for the clinical treatment of lumbar disc herniation.
3.The Adoption of Non-invasive Photobiomodulation in The Treatment of Epilepsy
Ao-Yun LI ; Zhan-Chuang LU ; Li CAO ; Si CHEN ; Hui JIANG ; Chang-Chun CHEN ; Lei CHEN
Progress in Biochemistry and Biophysics 2025;52(4):882-898
Epilepsy is a chronic neurological disease caused by abnormal synchronous discharge of the brain, which is characterized by recurrent and transient neurological abnormalities, mainly manifested as loss of consciousness and limb convulsions, and can occur in people of all ages. At present, anti-epileptic drugs (AEDs) are still the main means of treatment, but their efficacy is limited by the problem of drug resistance, and long-term use can cause serious side effects, such as cognitive dysfunction and vital organ damage. Although surgical resection of epileptic lesions has achieved certain results in some patients, the high cost and potential risk of neurological damage limit its scope of application. Therefore, the development of safe, accurate and personalized non-invasive treatment strategies has become one of the key directions of epilepsy research. In recent years, photobiomodulation (PBM) has gained significant attention as a promising non-invasive therapeutic approach. PBM uses light of specific wavelengths to penetrate tissues and interact with photosensitive molecules within cells, thereby modulating cellular metabolic processes. Research has shown that PBM can enhance mitochondrial function, promote ATP production, improve meningeal lymphatic drainage, reduce neuroinflammation, and stimulate the growth of neurons and synapses. These biological effects suggest that PBM not only holds the potential to reduce the frequency of seizures but also to improve the metabolic state and network function of neurons, providing a novel therapeutic avenue for epilepsy treatment. Compared to traditional treatment methods, PBM is non-invasive and avoids the risks associated with surgical interventions. Its low risk of significant side effects makes it particularly suitable for patients with drug-resistant epilepsy, offering new therapeutic options for those who have not responded to conventional treatments. Furthermore, PBM’s multi-target mechanism enables it to address a variety of complex etiologies of epilepsy, demonstrating its potential in precision medicine. In contrast to therapies targeting a single pathological mechanism, PBM’s multifaceted approach makes it highly adaptable to different types of epilepsy, positioning it as a promising supplementary or alternative treatment. Although animal studies and preliminary clinical trials have shown positive outcomes with PBM, its clinical application remains in the exploratory phase. Future research should aim to elucidate the precise mechanisms of PBM, optimize light parameters, such as wavelength, dose, and frequency, and investigate potential synergistic effects with other therapeutic modalities. These efforts will be crucial for enhancing the therapeutic efficacy of PBM and ensuring its safety and consistency in clinical settings. This review summarizes the types of epilepsy, diagnostic biomarkers, the advantages of PBM, and its mechanisms and potential applications in epilepsy treatment. The unique value of PBM lies not only in its multi-target therapeutic effects but also in its adaptability to the diverse etiologies of epilepsy. The combination of PBM with traditional treatments, such as pharmacotherapy and neuroregulatory techniques, holds promise for developing a more comprehensive and multidimensional treatment strategy, ultimately alleviating the treatment burden on patients. PBM has also shown beneficial effects on neural network plasticity in various neurodegenerative diseases. The dynamic remodeling of neural networks plays a critical role in the pathogenesis and treatment of epilepsy, and PBM’s multi-target mechanism may promote brain function recovery by facilitating neural network remodeling. In this context, optimizing optical parameters remains a key area of research. By adjusting parameters such as wavelength, dose, and frequency, researchers aim to further enhance the therapeutic effects of PBM while maintaining its safety and stability. Looking forward, interdisciplinary collaboration, particularly in the fields of neuroscience, optical engineering, and clinical medicine, will drive the development of PBM technology and facilitate its transition from laboratory research to clinical application. With the advancement of portable devices, PBM is expected to provide safer and more effective treatments for epilepsy patients and make a significant contribution to personalized medicine, positioning it as a critical component of precision therapeutic strategies.
4.Alleviation of Ulcerative Colitis by Shaoyaotang via Inhibiting Glycolysis Through SIRT6/HIF-1α Pathway
Yiling XIA ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Erle LIU ; Yiwen WANG ; Shaijin JIANG ; Yiqian YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):10-19
ObjectiveTo investigate the role of silent information regulatory protein (SIRT6)/hypoxia-inducible factor-1α (HIF-1α) pathway in regulating the reprogramming of glucose metabolism in ulcerative colitis (UC) and the mechanism of intervention of Shaoyaotang. MethodsForty-eight c57bL/6 mice were randomly divided into a blank group, a model group, a Mesalazine group (0.42 g·kg-1), a Shaoyaotang group (31.08 g·kg-1), an inhibitor group (OSS-128167, 50 mg·kg-1), and an inhibitor + Shaoyaotang group (50 mg·kg-1 OSS-128167 + 31.08 g·kg-1 Shaoyaotang). A UC model was established by the administration of 2.5% dextran sulfate sodium (DSS) solution for mice in other groups for 7 d, except for the blank group. The mice in each group were treated with saline, Mesalazine, Shaoyaotang, inhibitor, and inhibitor + Shaoyaotang, respectively, for 7 d. The mice were necropsied 24 h after the last administration of the drug. The blood was collected from the orbital region, and colon tissue was taken. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in colon tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to detect serum interleukin (IL)-10, IL-17, and IL-6 levels. A biochemical method was used to detect glucose and lactate dehydrogenase A (LDHA) levels. Immunohistochemistry (IHC) was employed to detect IL-22 and transforming growth factor-β1 (TGF-β1) levels in colon tissue, and Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were used to detect relative protein and mRNA expressions of SIRT6, HIF-1α, and LDHA. ResultsCompared with those of the blank group, disease activity index (DAI) scores of mice in the model group and inhibitor group were significantly increased (P<0.01). The length of colon tissue was significantly shortened, and colon tissue was congested and eroded. The pathohistological scores were significantly increased (P<0.01). The levels of serum inflammatory factors IL-17 and IL-6 were significantly elevated, and the levels of IL-10 were significantly decreased (P<0.01). The protein expressions of IL-22 and TGF-β1 were significantly reduced in colon tissue (P<0.01). The relative protein and mRNA expressions of SIRT6 were significantly decreased (P<0.01), and the relative protein and mRNA expressions of HIF-1α and LDHA and the contents of glucose and lactate were significantly elevated (P<0.01). The level of inflammation in the colon of the mice in the inhibitor group was more severe than that in the model group (P<0.01). Compared with the model group, the Mesalazine group, the Shaoyaotang group, and the inhibitor + Shaoyaotang group showed reduced colonic injury, significant decrease in serum IL-17 and IL-6, significant increase in IL-10 (P<0.01), significant increase in the protein expressions of IL-22 and TGF-β1 in colon tissue (P<0.01), significant increase in the protein expressions of SIRT6 and the relative mRNA expressions (P<0.01), and significant reduction in the protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate (P<0.01). Compared with those in the Shaoyaotang group, the serum IL-17 and IL-6 were significantly increased, and IL-10 was significantly decreased in the inhibitor + Shaoyaotang group (P<0.01). The protein expressions of IL-22 and TGF-β1 in colon tissue were significantly decreased (P<0.01). The expressions of SIRT6 protein and the relative mRNA expressions were significantly decreased (P<0.01). The protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate were significantly elevated (P<0.01). However, the difference between the Shaoyaotang group and the Mesalazine group was not significant. ConclusionShaoyaotang can effectively treat DSS-induced mice with UC through the SIRT6/HIF-1α pathway, and its mechanism of action may be related to the regulation of the SIRT6/HIF-1α pathway and glucose metabolism reprogramming and the inhibition of glycolysis.
5.Alleviation of Ulcerative Colitis by Shaoyaotang via Inhibiting Glycolysis Through SIRT6/HIF-1α Pathway
Yiling XIA ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Erle LIU ; Yiwen WANG ; Shaijin JIANG ; Yiqian YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):10-19
ObjectiveTo investigate the role of silent information regulatory protein (SIRT6)/hypoxia-inducible factor-1α (HIF-1α) pathway in regulating the reprogramming of glucose metabolism in ulcerative colitis (UC) and the mechanism of intervention of Shaoyaotang. MethodsForty-eight c57bL/6 mice were randomly divided into a blank group, a model group, a Mesalazine group (0.42 g·kg-1), a Shaoyaotang group (31.08 g·kg-1), an inhibitor group (OSS-128167, 50 mg·kg-1), and an inhibitor + Shaoyaotang group (50 mg·kg-1 OSS-128167 + 31.08 g·kg-1 Shaoyaotang). A UC model was established by the administration of 2.5% dextran sulfate sodium (DSS) solution for mice in other groups for 7 d, except for the blank group. The mice in each group were treated with saline, Mesalazine, Shaoyaotang, inhibitor, and inhibitor + Shaoyaotang, respectively, for 7 d. The mice were necropsied 24 h after the last administration of the drug. The blood was collected from the orbital region, and colon tissue was taken. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in colon tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to detect serum interleukin (IL)-10, IL-17, and IL-6 levels. A biochemical method was used to detect glucose and lactate dehydrogenase A (LDHA) levels. Immunohistochemistry (IHC) was employed to detect IL-22 and transforming growth factor-β1 (TGF-β1) levels in colon tissue, and Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were used to detect relative protein and mRNA expressions of SIRT6, HIF-1α, and LDHA. ResultsCompared with those of the blank group, disease activity index (DAI) scores of mice in the model group and inhibitor group were significantly increased (P<0.01). The length of colon tissue was significantly shortened, and colon tissue was congested and eroded. The pathohistological scores were significantly increased (P<0.01). The levels of serum inflammatory factors IL-17 and IL-6 were significantly elevated, and the levels of IL-10 were significantly decreased (P<0.01). The protein expressions of IL-22 and TGF-β1 were significantly reduced in colon tissue (P<0.01). The relative protein and mRNA expressions of SIRT6 were significantly decreased (P<0.01), and the relative protein and mRNA expressions of HIF-1α and LDHA and the contents of glucose and lactate were significantly elevated (P<0.01). The level of inflammation in the colon of the mice in the inhibitor group was more severe than that in the model group (P<0.01). Compared with the model group, the Mesalazine group, the Shaoyaotang group, and the inhibitor + Shaoyaotang group showed reduced colonic injury, significant decrease in serum IL-17 and IL-6, significant increase in IL-10 (P<0.01), significant increase in the protein expressions of IL-22 and TGF-β1 in colon tissue (P<0.01), significant increase in the protein expressions of SIRT6 and the relative mRNA expressions (P<0.01), and significant reduction in the protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate (P<0.01). Compared with those in the Shaoyaotang group, the serum IL-17 and IL-6 were significantly increased, and IL-10 was significantly decreased in the inhibitor + Shaoyaotang group (P<0.01). The protein expressions of IL-22 and TGF-β1 in colon tissue were significantly decreased (P<0.01). The expressions of SIRT6 protein and the relative mRNA expressions were significantly decreased (P<0.01). The protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate were significantly elevated (P<0.01). However, the difference between the Shaoyaotang group and the Mesalazine group was not significant. ConclusionShaoyaotang can effectively treat DSS-induced mice with UC through the SIRT6/HIF-1α pathway, and its mechanism of action may be related to the regulation of the SIRT6/HIF-1α pathway and glucose metabolism reprogramming and the inhibition of glycolysis.
6.Effect of Zuoguiwan on Development of Skin Barrier in Neonatal Rat Model of Congenital Kidney Deficiency Based on Intercellular Connections
He YU ; Min XIAO ; Xiaocui JIANG ; Min ZHAO ; Yinjuan LYU ; Jian GONG ; Jigang CAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):11-18
ObjectiveTo study the effect of Zuoguiwan on the development of skin barrier in the neonatal rat model of congenital kidney deficiency and unveil the underlying mechanism. MethodsSixty rats were paired in a female-to-male ratio of 2∶1, and the pregnant rats were assigned into control, congenital kidney deficiency, and low- and high-dose (2 and 8 g·kg-1, respectively) Zuoguiwan groups. The pregnant rats in other groups except the control group were exposed to chronic unpredictable mild stress for the modeling of congenital kidney deficiency. The rats in the control group and congenital kidney deficiency group were administrated with normal saline by gavage, and those in Zuoguiwan groups with Zuoguiwan suspension by gavage from day 1 of pregnancy. The serum level of interleukin-6 (IL-6) in the neonatal rats on the day of birth was determined by enzyme-linked immunosorbent assay. The full-thickness skin of neonatal rats on the day of birth was removed from the same position on the back and stained with hematoxylin-eosin for observation of histopathological changes, measurement of skin thickness, and counting of hair follicles. Terminal deoxynucleotidyl transferase-mediated nick end labeling was used to detect the apoptosis of skin tissue cells. The expression of interleukin-6 receptor (IL-6R) and interleukin-17A (IL-17A) in the skin tissue was assessed by immunohistochemistry and Western blot, and the expression of occludin, connexin 43 (Cx43), and zonula occludens-1 (ZO-1) in the skin tissue was assessed by immunofluorescence and Western blot. ResultsCompared with those in the control group, the neonatal rats in the congenital kidney deficiency group showed a rise in the serum IL-6 level (P<0.01), decreases in stratum corneum thickness, skin thickness, and number of hair follicles (P<0.01), increases in the expression of IL-6R and IL-17A in the skin tissue (P<0.01) and the number of apoptotic cells (P<0.01), and decreases in the expression of occludin, Cx43, ZO-1 (P<0.05). Compared with the congenital kidney deficiency group, the low- and high-dose Zuoguiwan groups showed declines in serum IL-6 level (P<0.05). The low-dose group showed increased number of hair follicles (P<0.05), and the high-dose group presented thickened stratum corneum (P<0.01), increased number of hair follicles (P<0.01), and down-regulated expression of IL-6R and IL-17A in the skin tissue (P<0.05, P<0.01). Both Zuoguiwan groups showcased decreased number of apoptotic cells (P<0.05, P<0.01), and the high-dose group showed up-regulated expression of occludin, Cx43, and ZO-1 in the skin tissue (P<0.05, P<0.01). ConclusionZuoguiwan can reduce the levels of IL-6 in the serum and IL-6R and IL-17A in the skin tissue and improve the expression of intercellular junction proteins, thereby ameliorating the abnormal development of the skin barrier in the neonatal rat model of congenital kidney deficiency.
7.Shaoyaotang Restores Th17/Treg Cell Balance by Regulating Glucose Metabolism Reprogramming in Treatment of Ulcerative Colitis
Yiwen WANG ; Yiling XIA ; Erle LIU ; Shaijin JIANG ; Bo ZOU ; Dongsheng WU ; Youwei XIAO ; Hui CAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):78-85
ObjectiveTo investigate the effect of Shaoyaotang on T helper cell 17/regulatory T lymphocyte(Th17/Treg) cell balance in ulcerative colitis and decipher the intervention mechanism based on glucose metabolism reprogramming. MethodsThe mouse model of ulcerative colitis was established by the dextran sulfate sodium (DSS) method. Forty-eight C57BL/6 mice were randomly allocated into normal, model, Western drug control (mesalazine, 0.39 g·kg-1·d-1), Shaoyaotang (15.54 g·kg-1·d-1), inhibitor (2-deoxy-D-glucose, 2-DG, 100 mg·kg-1·d-1), and inhibitor (2-DG, 100 mg·kg-1·d-1) + Shaoyaotang (15.54 g·kg-1·d-1) groups. Mice were administrated with the corresponding drugs by gavage for 7 days. The general conditions and the colon injury degree were observed 24 h after the last administration. The expression of interleukin (IL)-10 and IL-17 in the colon tissue was detected by immunohistochemical staining. Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were performed to determine the protein and mRNA levels, respectively, of hypoxia-inducing factor-1α (HIF-1α), lactate dehydrogenase (LDHA), and hexokinase 2 (HK2) in the colon tissue. Th17/Treg cell differentiation was detected by flow cytometry. Enzyme-linked immunosorbent assay was employed to measure the levels of lactic acid and glucose in the colon tissue and IL-10, IL-17, and IL-6 in the serum. ResultsCompared with the normal group, the model group showed decreases in body weight and disease activity index (DAI) (P<0.05), elevations in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and declines in the levels of of IL-10 and Treg cells (P<0.05). Compared with the model group, the drug administration groups showed increases in body weight and DAI (P<0.05), declines in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and rises in levels of IL-10 and Treg cells (P<0.05). Shaoyaotang+2-DG group had the most obvious effect. ConclusionShaoyaotang can relieve diarrhea and bloody stool in mice with ulcerative colitis by restoring the Th17/Treg cell balance via regulation of glucose metabolism reprogramming, thus playing a role in the treatment of ulcerative colitis.
8.Shaoyaotang Regulates Glucose Metabolism Reprogramming to Inhibit Macrophage Polarization Toward M1 Phenotype
Shaijin JIANG ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Yiwen WANG ; Yiling XIA ; Erle LIU ; Qi CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):86-93
ObjectiveTo explore the regulation of Shaoyaotang on glucose metabolism reprogramming of macrophages and the mechanism of this decoction in inhibiting macrophage polarization toward the M1 phenotype. MethodsHuman monocytic leukemia-1 (THP-1) cells were treated with 100 ng·L-1 phorbol myristate acetate for induction of macrophages as the normal control group. The cells treated with 100 ng·L-1 lipopolysaccharide combined with 20 ng·L-1 interferon (IFN)-γ for induction of M1-type macrophages were taken as the M1 model group. M1-type macrophages were treated with the blank serum, Shaoyaotang-containing serum, 0.5 mol·L-1 2-deoxy-D-glucose (2-DG), and Shaoyaotang-containing serum + 2-DG, respectively. After intervention, the expression of CD86 and CD206 was examined by flow cytometry. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-β were assessed by ELISA. Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of hypoxia-inducible factor-1 alpha (HIF-1α), glucose transporter 1 (GLUT1), hexokinase 2 (HK2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). ResultsCompared with that in the normal control group, the expression of CD86, the marker of M1-type macrophages, increased in the M1 model group and blank serum group (P<0.01), which indicated that the M1 inflammatory model was established successfully. In addition, the M1 model group was observed with up-regulated mRNA and protein levels of proinflammatory cytokines IL-6 and TNF-α and glycolysis-related factors HIF-1α, GLUT1, HK2, GAPDH, and PFKFB3 (P<0.01). Compared with the M1 model group, the Shaoyaotang-containing serum, 2-DG, and combined intervention groups showed decreased expression of CD86 (P<0.01), down-regulated mRNA and protein levels of proinflammatory factors IL-6 and TNF-α and glycolysis-related factors HIF-1α, GLUT1, HK2, GAPDH, and PFKFB3 produced by M1-type macrophages (P<0.01), increased expression of CD206 (marker of M2-type macrophages) (P<0.01), and elevated levels of IL-10 and TGF-β produced by M2-type macrophages (P<0.01). ConclusionShaoyaotang inhibits macrophage differentiation toward pro-inflammatory M1-type macrophages and promotes the differentiation toward anti-inflammatory M2-type macrophages by regulating glucose metabolism reprogramming. The evidence gives insights into new molecular mechanisms and targets for the treatment of ulcerative colitis with Shaoyaotang.
9.Effect of Zuoguiwan on Development of Skin Barrier in Neonatal Rat Model of Congenital Kidney Deficiency Based on Intercellular Connections
He YU ; Min XIAO ; Xiaocui JIANG ; Min ZHAO ; Yinjuan LYU ; Jian GONG ; Jigang CAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):11-18
ObjectiveTo study the effect of Zuoguiwan on the development of skin barrier in the neonatal rat model of congenital kidney deficiency and unveil the underlying mechanism. MethodsSixty rats were paired in a female-to-male ratio of 2∶1, and the pregnant rats were assigned into control, congenital kidney deficiency, and low- and high-dose (2 and 8 g·kg-1, respectively) Zuoguiwan groups. The pregnant rats in other groups except the control group were exposed to chronic unpredictable mild stress for the modeling of congenital kidney deficiency. The rats in the control group and congenital kidney deficiency group were administrated with normal saline by gavage, and those in Zuoguiwan groups with Zuoguiwan suspension by gavage from day 1 of pregnancy. The serum level of interleukin-6 (IL-6) in the neonatal rats on the day of birth was determined by enzyme-linked immunosorbent assay. The full-thickness skin of neonatal rats on the day of birth was removed from the same position on the back and stained with hematoxylin-eosin for observation of histopathological changes, measurement of skin thickness, and counting of hair follicles. Terminal deoxynucleotidyl transferase-mediated nick end labeling was used to detect the apoptosis of skin tissue cells. The expression of interleukin-6 receptor (IL-6R) and interleukin-17A (IL-17A) in the skin tissue was assessed by immunohistochemistry and Western blot, and the expression of occludin, connexin 43 (Cx43), and zonula occludens-1 (ZO-1) in the skin tissue was assessed by immunofluorescence and Western blot. ResultsCompared with those in the control group, the neonatal rats in the congenital kidney deficiency group showed a rise in the serum IL-6 level (P<0.01), decreases in stratum corneum thickness, skin thickness, and number of hair follicles (P<0.01), increases in the expression of IL-6R and IL-17A in the skin tissue (P<0.01) and the number of apoptotic cells (P<0.01), and decreases in the expression of occludin, Cx43, ZO-1 (P<0.05). Compared with the congenital kidney deficiency group, the low- and high-dose Zuoguiwan groups showed declines in serum IL-6 level (P<0.05). The low-dose group showed increased number of hair follicles (P<0.05), and the high-dose group presented thickened stratum corneum (P<0.01), increased number of hair follicles (P<0.01), and down-regulated expression of IL-6R and IL-17A in the skin tissue (P<0.05, P<0.01). Both Zuoguiwan groups showcased decreased number of apoptotic cells (P<0.05, P<0.01), and the high-dose group showed up-regulated expression of occludin, Cx43, and ZO-1 in the skin tissue (P<0.05, P<0.01). ConclusionZuoguiwan can reduce the levels of IL-6 in the serum and IL-6R and IL-17A in the skin tissue and improve the expression of intercellular junction proteins, thereby ameliorating the abnormal development of the skin barrier in the neonatal rat model of congenital kidney deficiency.
10.Shaoyaotang Restores Th17/Treg Cell Balance by Regulating Glucose Metabolism Reprogramming in Treatment of Ulcerative Colitis
Yiwen WANG ; Yiling XIA ; Erle LIU ; Shaijin JIANG ; Bo ZOU ; Dongsheng WU ; Youwei XIAO ; Hui CAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):78-85
ObjectiveTo investigate the effect of Shaoyaotang on T helper cell 17/regulatory T lymphocyte(Th17/Treg) cell balance in ulcerative colitis and decipher the intervention mechanism based on glucose metabolism reprogramming. MethodsThe mouse model of ulcerative colitis was established by the dextran sulfate sodium (DSS) method. Forty-eight C57BL/6 mice were randomly allocated into normal, model, Western drug control (mesalazine, 0.39 g·kg-1·d-1), Shaoyaotang (15.54 g·kg-1·d-1), inhibitor (2-deoxy-D-glucose, 2-DG, 100 mg·kg-1·d-1), and inhibitor (2-DG, 100 mg·kg-1·d-1) + Shaoyaotang (15.54 g·kg-1·d-1) groups. Mice were administrated with the corresponding drugs by gavage for 7 days. The general conditions and the colon injury degree were observed 24 h after the last administration. The expression of interleukin (IL)-10 and IL-17 in the colon tissue was detected by immunohistochemical staining. Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were performed to determine the protein and mRNA levels, respectively, of hypoxia-inducing factor-1α (HIF-1α), lactate dehydrogenase (LDHA), and hexokinase 2 (HK2) in the colon tissue. Th17/Treg cell differentiation was detected by flow cytometry. Enzyme-linked immunosorbent assay was employed to measure the levels of lactic acid and glucose in the colon tissue and IL-10, IL-17, and IL-6 in the serum. ResultsCompared with the normal group, the model group showed decreases in body weight and disease activity index (DAI) (P<0.05), elevations in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and declines in the levels of of IL-10 and Treg cells (P<0.05). Compared with the model group, the drug administration groups showed increases in body weight and DAI (P<0.05), declines in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and rises in levels of IL-10 and Treg cells (P<0.05). Shaoyaotang+2-DG group had the most obvious effect. ConclusionShaoyaotang can relieve diarrhea and bloody stool in mice with ulcerative colitis by restoring the Th17/Treg cell balance via regulation of glucose metabolism reprogramming, thus playing a role in the treatment of ulcerative colitis.

Result Analysis
Print
Save
E-mail