1.Aldehyde Dehydrogenase 2 Gene Mutation May Reduce the Risk of Rupture of Intracranial Aneurysm in Chinese Han Population
Xiheng CHEN ; Siming GUI ; Dachao WEI ; Dingwei DENG ; Yudi TANG ; Jian LV ; Wei YOU ; Jia JIANG ; Jun LIN ; Huijian GE ; Peng LIU ; Yuhua JIANG ; Lixin MA ; Yunci WANG ; Ming LV ; Youxiang LI
Journal of Stroke 2025;27(2):237-249
Background:
and Purpose Ruptured intracranial aneurysms (RIA) are associated with a mortality rate of up to 40% in the Chinese population, highlighting the critical need for targeted treatment interventions for at-risk individuals. Although the impact of aldehyde dehydrogenase 2 (ALDH2) gene mutations on susceptibility to intracranial aneurysms (IA) is well documented, the potential connection between ALDH2 rs671 single-nucleotide polymorphism (SNP) and RIA remains unexplored. Given the increased prevalence of ALDH2 gene mutations among Chinese Han individuals, it is clinically relevant to investigate the link between ALDH2 rs671 SNP and IA rupture.
Methods:
A prospective study was conducted on 546 patients diagnosed with IA to investigate the association between ALDH2 rs671 SNP and the risk of IA rupture.
Results:
The ALDH2 rs671 SNP (ALDH2*2) was significantly more prevalent in patients with unruptured IA (UIA) than in those with RIA (32.56% vs. 18.58%, P=0.004). Multivariate logistic regression analysis revealed that people with the ALDH2 mutation (ALDH2*1/*2 and ALDH2*2/*2 gene type) had a significantly reduced odds ratio (OR=0.49; 95% confidence level [CI] 0.27–0.88; P=0.018) for RIAs. Age-specific subgroup analysis indicated that the ALDH2 mutation provided a stronger protective effect in individuals aged 60 years and above with IA compared to those under 60 years old (OR=0.38 vs. OR=0.52, both P<0.05).
Conclusion
The incidence of RIA was significantly higher in individuals with a normal ALDH2 gene (ALDH2*1/*1) than in those with an ALDH2 rs671 SNP (ALDH2*1/*2 or ALDH2*2/*2). ALDH2 rs671 SNP may serve as a protective factor against RIA in the Chinese Han population.
2.Aldehyde Dehydrogenase 2 Gene Mutation May Reduce the Risk of Rupture of Intracranial Aneurysm in Chinese Han Population
Xiheng CHEN ; Siming GUI ; Dachao WEI ; Dingwei DENG ; Yudi TANG ; Jian LV ; Wei YOU ; Jia JIANG ; Jun LIN ; Huijian GE ; Peng LIU ; Yuhua JIANG ; Lixin MA ; Yunci WANG ; Ming LV ; Youxiang LI
Journal of Stroke 2025;27(2):237-249
Background:
and Purpose Ruptured intracranial aneurysms (RIA) are associated with a mortality rate of up to 40% in the Chinese population, highlighting the critical need for targeted treatment interventions for at-risk individuals. Although the impact of aldehyde dehydrogenase 2 (ALDH2) gene mutations on susceptibility to intracranial aneurysms (IA) is well documented, the potential connection between ALDH2 rs671 single-nucleotide polymorphism (SNP) and RIA remains unexplored. Given the increased prevalence of ALDH2 gene mutations among Chinese Han individuals, it is clinically relevant to investigate the link between ALDH2 rs671 SNP and IA rupture.
Methods:
A prospective study was conducted on 546 patients diagnosed with IA to investigate the association between ALDH2 rs671 SNP and the risk of IA rupture.
Results:
The ALDH2 rs671 SNP (ALDH2*2) was significantly more prevalent in patients with unruptured IA (UIA) than in those with RIA (32.56% vs. 18.58%, P=0.004). Multivariate logistic regression analysis revealed that people with the ALDH2 mutation (ALDH2*1/*2 and ALDH2*2/*2 gene type) had a significantly reduced odds ratio (OR=0.49; 95% confidence level [CI] 0.27–0.88; P=0.018) for RIAs. Age-specific subgroup analysis indicated that the ALDH2 mutation provided a stronger protective effect in individuals aged 60 years and above with IA compared to those under 60 years old (OR=0.38 vs. OR=0.52, both P<0.05).
Conclusion
The incidence of RIA was significantly higher in individuals with a normal ALDH2 gene (ALDH2*1/*1) than in those with an ALDH2 rs671 SNP (ALDH2*1/*2 or ALDH2*2/*2). ALDH2 rs671 SNP may serve as a protective factor against RIA in the Chinese Han population.
3.Aldehyde Dehydrogenase 2 Gene Mutation May Reduce the Risk of Rupture of Intracranial Aneurysm in Chinese Han Population
Xiheng CHEN ; Siming GUI ; Dachao WEI ; Dingwei DENG ; Yudi TANG ; Jian LV ; Wei YOU ; Jia JIANG ; Jun LIN ; Huijian GE ; Peng LIU ; Yuhua JIANG ; Lixin MA ; Yunci WANG ; Ming LV ; Youxiang LI
Journal of Stroke 2025;27(2):237-249
Background:
and Purpose Ruptured intracranial aneurysms (RIA) are associated with a mortality rate of up to 40% in the Chinese population, highlighting the critical need for targeted treatment interventions for at-risk individuals. Although the impact of aldehyde dehydrogenase 2 (ALDH2) gene mutations on susceptibility to intracranial aneurysms (IA) is well documented, the potential connection between ALDH2 rs671 single-nucleotide polymorphism (SNP) and RIA remains unexplored. Given the increased prevalence of ALDH2 gene mutations among Chinese Han individuals, it is clinically relevant to investigate the link between ALDH2 rs671 SNP and IA rupture.
Methods:
A prospective study was conducted on 546 patients diagnosed with IA to investigate the association between ALDH2 rs671 SNP and the risk of IA rupture.
Results:
The ALDH2 rs671 SNP (ALDH2*2) was significantly more prevalent in patients with unruptured IA (UIA) than in those with RIA (32.56% vs. 18.58%, P=0.004). Multivariate logistic regression analysis revealed that people with the ALDH2 mutation (ALDH2*1/*2 and ALDH2*2/*2 gene type) had a significantly reduced odds ratio (OR=0.49; 95% confidence level [CI] 0.27–0.88; P=0.018) for RIAs. Age-specific subgroup analysis indicated that the ALDH2 mutation provided a stronger protective effect in individuals aged 60 years and above with IA compared to those under 60 years old (OR=0.38 vs. OR=0.52, both P<0.05).
Conclusion
The incidence of RIA was significantly higher in individuals with a normal ALDH2 gene (ALDH2*1/*1) than in those with an ALDH2 rs671 SNP (ALDH2*1/*2 or ALDH2*2/*2). ALDH2 rs671 SNP may serve as a protective factor against RIA in the Chinese Han population.
4.Surgical Perspective on Lung Cancer in 2024: Innovation and Challenges.
Pengxu KONG ; Xiaohan CHEN ; Wang LV ; Pinghui XIA ; Luming WANG ; Jian HU
Chinese Journal of Lung Cancer 2025;28(3):195-200
Lung cancer, a highly prevalent and deadly malignancy globally, poses a significant disease burden in China and is the leading cause of cancer death. Despite rapid advances in medicine, its incidence and mortality rates remain stubbornly high, making it a major challenge in public health. Against the backdrop of rapid progress in precision medicine, the paradigm of lung cancer treatment is shifting from single traditional therapy to multi-dimensional integration. This article comprehensively reviews the innovations and challenges in lung cancer surgery in 2024, aiming to explore the future development of surgical treatment with colleagues and to improve patients' quality of life and achieve the goal of "cure".
.
Humans
;
Lung Neoplasms/surgery*
5.The Valvular Heart Disease-specific Age-adjusted Comorbidity Index (VHD-ACI) score in patients with moderate or severe valvular heart disease.
Mu-Rong XIE ; Bin ZHANG ; Yun-Qing YE ; Zhe LI ; Qing-Rong LIU ; Zhen-Yan ZHAO ; Jun-Xing LV ; De-Jing FENG ; Qing-Hao ZHAO ; Hai-Tong ZHANG ; Zhen-Ya DUAN ; Bin-Cheng WANG ; Shuai GUO ; Yan-Yan ZHAO ; Run-Lin GAO ; Hai-Yan XU ; Yong-Jian WU
Journal of Geriatric Cardiology 2025;22(9):759-774
BACKGROUND:
Based on the China-VHD database, this study sought to develop and validate a Valvular Heart Disease- specific Age-adjusted Comorbidity Index (VHD-ACI) for predicting mortality risk in patients with VHD.
METHODS & RESULTS:
The China-VHD study was a nationwide, multi-centre multi-centre cohort study enrolling 13,917 patients with moderate or severe VHD across 46 medical centres in China between April-June 2018. After excluding cases with missing key variables, 11,459 patients were retained for final analysis. The primary endpoint was 2-year all-cause mortality, with 941 deaths (10.0%) observed during follow-up. The VHD-ACI was derived after identifying 13 independent mortality predictors: cardiomyopathy, myocardial infarction, chronic obstructive pulmonary disease, pulmonary artery hypertension, low body weight, anaemia, hypoalbuminaemia, renal insufficiency, moderate/severe hepatic dysfunction, heart failure, cancer, NYHA functional class and age. The index exhibited good discrimination (AUC, 0.79) and calibration (Brier score, 0.062) in the total cohort, outperforming both EuroSCORE II and ACCI (P < 0.001 for comparison). Internal validation through 100 bootstrap iterations yielded a C statistic of 0.694 (95% CI: 0.665-0.723) for 2-year mortality prediction. VHD-ACI scores, as a continuous variable (VHD-ACI score: adjusted HR (95% CI): 1.263 (1.245-1.282), P < 0.001) or categorized using thresholds determined by the Yoden index (VHD-ACI ≥ 9 vs. < 9, adjusted HR (95% CI): 6.216 (5.378-7.184), P < 0.001), were independently associated with mortality. The prognostic performance remained consistent across all VHD subtypes (aortic stenosis, aortic regurgitation, mitral stenosis, mitral regurgitation, tricuspid valve disease, mixed aortic/mitral valve disease and multiple VHD), and clinical subgroups stratified by therapeutic strategy, LVEF status (preserved vs. reduced), disease severity and etiology.
CONCLUSION
The VHD-ACI is a simple 13-comorbidity algorithm for the prediction of mortality in VHD patients and providing a simple and rapid tool for risk stratification.
6.Engineered platelet-derived exosomal spheres for enhanced tumor penetration and extended circulation in melanoma immunotherapy.
Jian ZHAO ; Xinyan LV ; Qi LU ; Kaiyuan WANG ; Lili DU ; Xiaoyuan FAN ; Fei SUN ; Fengxiang LIU ; Zhonggui HE ; Hao YE ; Jin SUN
Acta Pharmaceutica Sinica B 2025;15(7):3756-3766
Cells and exosomes derived from them are extensively used as biological carrier systems. Cells demonstrate superior targeting specificity and prolonged circulation facilitated by their rich array of surface proteins, while exosomes, due to their small size, cross barriers and penetrate tumors efficiently. However, challenges remain, cells' large size restricts tissue penetration, and exosomes have limited targeting accuracy and short circulation times. To address these challenges, we developed a novel concept termed exosomal spheres. This approach involved incorporating platelet-derived exosomes shielded with phosphatidylserine (PS) and linked via pH-sensitive bonds for drug delivery applications. The study demonstrated that, compared with exosomes, the exosomal spheres improved blood circulation through the upregulation of CD47 expression and shielding of phosphatidylserine, thereby minimizing immune clearance. Moreover, the increased expression of P-selectin promoted adhesion to circulating tumor cells, thereby enhancing targeting efficiency. Upon reaching the tumor site, the hydrazone bonds of exosome spheres were protonated in the acidic tumor microenvironment, leading to disintegration into uniform-sized exosomes capable of deeper tumor penetration compared to platelets. These findings suggested that exosome spheres addressed the challenges and offered significant potential for efficient and precise drug delivery.
7.E3 ubiquitin ligase FBXW11-mediated downregulation of S100A11 promotes sensitivity to PARP inhibitor in ovarian cancer.
Ligang CHEN ; Mingyi WANG ; Yunge GAO ; Yanhong LV ; Lianghao ZHAI ; Jian DONG ; Yan CHEN ; Xia LI ; Xin GUO ; Biliang CHEN ; Yi RU ; Xiaohui LV
Journal of Pharmaceutical Analysis 2025;15(7):101246-101246
Resistance to poly adenosine diphosphate (ADP)-ribose polymerase inhibitor (PARPi) presents a considerable obstacle in the treatment of ovarian cancer. F-box and tryptophan-aspartic (WD) repeat domain containing 11 (FBXW11) modulates the ubiquitination of growth-and invasion-related factors in lung cancer, colorectal cancer, and osteosarcoma. The function of FBXW11 in PARPi therapy is still ambiguous. In this study, RNA sequencing (RNA-seq) showed that FBXW11 expression was raised in ovarian cancer cells that had been treated with PARPi. FBXW11 was abnormally expressed at low levels in high-grade serous ovarian cancer (HGSOC) tissues, and low levels of FBXW11 were associated with shorter overall survival (OS) and progression-free survival (PFS) in HGSOC patients. Overexpressing FBXW11 made ovarian cancer more sensitive to PARPi, while knocking down FBXW11 made it less sensitive. The four-dimensional (4D) label-free quantitative proteomic analysis revealed that FBXW11 targeted S100 calcium binding protein A11 (S100A11) and promoted its degradation through ubiquitination. The increased degradation of S100A11 led to less efficient DNA damage repair, which in turn contributed to increased PARPi-induced DNA damage. The role of FBXW11 in promoting PARPi sensitivity was also confirmed in xenograft mouse models. In summary, our study confirms that FBXW11 promotes the susceptibility of ovarian cancer cells to PARPi via affecting S100A11-mediated DNA damage repair.
8.Metabolic engineering of Escherichia coli for efficient biosynthesis of L-citrulline.
Linfeng XU ; Wenwen YU ; Xuewen ZHU ; Quanwei ZHANG ; Yaokang WU ; Jianghua LI ; Guocheng DU ; Xueqin LV ; Jian CHEN ; Long LIU
Chinese Journal of Biotechnology 2025;41(1):242-255
L-citrulline is a nonprotein amino acid that plays an important role in human health and has great market demand. Although microbial cell factories have been widely used for biosynthesis, there are still challenges such as genetic instability and low efficiency in the biosynthesis of L-citrulline. In this study, an efficient, plasmid-free, non-inducible L-citrulline-producing strain of Escherichia coli BL21(DE3) was engineered by combined strategies. Firstly, a chassis strain capable of synthesizing L-citrulline was constructed by block of L-citrulline degradation and removal of feedback inhibition, with the L-citrulline titer of 0.43 g/L. Secondly, a push-pull-restrain strategy was employed to enhance the L-citrulline biosynthesis, which realized the L-citrulline titer of 6.0 g/L. Thirdly, the NADPH synthesis and L-citrulline transport were strengthened to promote the synthesis efficiency, which achieved the L-citrulline titer of 11.6 g/L. Finally, fed-batch fermentation was performed with the engineered strain in a 3 L fermenter, in which the L-citrulline titer reached 44.9 g/L. This study lays the foundation for the industrial production of L-citrulline and provides insights for the modification of other amino acid metabolic networks.
Citrulline/biosynthesis*
;
Escherichia coli/genetics*
;
Metabolic Engineering/methods*
;
Fermentation
;
NADP/biosynthesis*
9.Expert consensus on the rational application of the biological clock in stomatology research
Kai YANG ; Moyi SUN ; Longjiang LI ; Zhangui TANG ; Guoxin REN ; Wei GUO ; Songsong ZHU ; Jia-Wei ZHENG ; Jie ZHANG ; Zhijun SUN ; Jie REN ; Jiawen ZHENG ; Xiaoqiang LV ; Hong TANG ; Dan CHEN ; Qing XI ; Xin HUANG ; Heming WU ; Hong MA ; Wei SHANG ; Jian MENG ; Jichen LI ; Chunjie LI ; Yi LI ; Ningbo ZHAO ; Xuemei TAN ; Yixin YANG ; Yadong WU ; Shilin YIN ; Zhiwei ZHANG
Journal of Practical Stomatology 2024;40(4):455-460
The biological clock(also known as the circadian rhythm)is the fundamental reliance for all organisms on Earth to adapt and survive in the Earth's rotation environment.Circadian rhythm is the most basic regulatory mechanism of life activities,and plays a key role in maintaining normal physiological and biochemical homeostasis,disease occurrence and treatment.Recent studies have shown that the biologi-cal clock plays an important role in the development of oral tissues and in the occurrence and treatment of oral diseases.Since there is cur-rently no guiding literature on the research methods of biological clock in stomatology,researchers mainly conduct research based on pub-lished references,which has led to controversy about the research methods of biological clock in stomatology,and there are many confusions about how to rationally apply the research methods of circadia rhythms.In view of this,this expert consensus summarizes the characteristics of the biological clock and analyzes the shortcomings of the current biological clock research in stomatology,and organizes relevant experts to summarize and recommend 10 principles as a reference for the rational implementation of the biological clock in stomatology research.
10.iRSC-PseAAC:Predicting Redox-sensitive Cysteine Sites in Proteins Based on Effective Dimension Reduction Algorithm LDA
Xin WEI ; Chun-Sheng LIU ; Zhe LV ; Gang LIN ; Si-Qin HU ; Jian-Hua JIA
Chinese Journal of Biochemistry and Molecular Biology 2024;40(7):1009-1016
Redox-sensitive cysteine(RSC)thiol plays an important role in many biological processes such as photosynthesis,cellular metabolism,and transcription.Therefore,it is necessary to identify red-ox-sensitive cysteine accurately.However,traditional redox-sensitive cysteine identification is very ex-pensive and time-consuming.At present,there is an urgent need for a mathematical calculation method to identify sequence information and redox-sensitive cysteines quickly and accurately.Here,we devel-oped an effective predictor called iRSC-PseAAC,which used the dimension reduction algorithm LDA combined with the support vector machine to predict redox-sensitive cysteine sites.In the cross-validation results,the specificity(Sp),sensitivity(Sn),accuracy(Acc)and Matthews correlation coefficient(MCC)were 0.841,0.868,0.859 and 0.692 respectively.In the independent dataset results,the Sp,Sn,Acc and MCC were 0.906,0.882,0.890 and 0.767 respectively.compared with existing prediction methods,iRSC-PseAAC had obvious improvement effect.The method proposed for this study can also be used for many problems in computational proteomics.

Result Analysis
Print
Save
E-mail