1.A Radiologist’s Guide to IDH-Wildtype Glioblastoma for Efficient Communication With Clinicians: Part II–Essential Information on Post-Treatment Imaging
Philipp VOLLMUTH ; Philipp KARSCHNIA ; Felix SAHM ; Yae Won PARK ; Sung Soo AHN ; Rajan JAIN
Korean Journal of Radiology 2025;26(4):368-389
Owing to recent advancements in various postoperative treatment modalities, such as radiation, chemotherapy, antiangiogenic treatment, and immunotherapy, the radiological and clinical assessment of patients with isocitrate dehydrogenase-wildtype glioblastoma using post-treatment imaging has become increasingly challenging. This review highlights the challenges in differentiating treatment-related changes such as pseudoprogression, radiation necrosis, and pseudoresponse from true tumor progression and aims to serve as a guideline for efficient communication with clinicians for optimal management of patients with post-treatment imaging.
2.A Radiologist’s Guide to IDH-Wildtype Glioblastoma for Efficient Communication With Clinicians:Part I–Essential Information on Preoperative and Immediate Postoperative Imaging
Philipp VOLLMUTH ; Philipp KARSCHNIA ; Felix SAHM ; Yae Won PARK ; Sung Soo AHN ; Rajan JAIN
Korean Journal of Radiology 2025;26(3):246-268
The paradigm of isocitrate dehydrogenase (IDH)-wildtype glioblastoma is rapidly evolving, reflecting clinical, pathological, and imaging advancements. Thus, it remains challenging for radiologists, even those who are dedicated to neuro-oncology imaging, to keep pace with this rapidly progressing field and provide useful and updated information to clinicians. Based on current knowledge, radiologists can play a significant role in managing patients with IDH-wildtype glioblastoma by providing accurate preoperative diagnosis as well as preoperative and postoperative treatment planning including accurate delineation of the residual tumor. Through active communication with clinicians, extending far beyond the confines of the radiology reading room, radiologists can impact clinical decision making. This Part 1 review provides an overview about the neuropathological diagnosis of glioblastoma to understand the past, present, and upcoming revisions of the World Health Organization classification.The imaging findings that are noteworthy for radiologists while communicating with clinicians on preoperative and immediate postoperative imaging of IDH-wildtype glioblastomas will be summarized.
4.Optimizing Glioblastoma, IDH-wildtype Treatment Outcomes : A Radiomics and Support Vector Machine-Based Approach to Overall Survival Estimation
Jiunn-Kai CHONG ; Priyanka JAIN ; Shivani PRASAD ; Navneet Kumar DUBEY ; Sanjay SAXENA ; Wen-Cheng LO
Journal of Korean Neurosurgical Society 2025;68(1):7-18
Objective:
: Glioblastoma multiforme (GBM), particularly the isocitrate dehydrogenase (IDH)-wildtype type, represents a significant clinical challenge due to its aggressive nature and poor prognosis. Despite advancements in medical imaging and its modalities, survival rates have not improved significantly, demanding innovative treatment planning and outcome prediction approaches.
Methods:
: This study utilizes a support vector machine (SVM) classifier using radiomics features to predict the overall survival (OS) of GBM, IDH-wildtype patients to short (<12 months) and long (≥12 months) survivors. A dataset comprising multi-parametric magnetic resonance imaging scans from 574 patients was analyzed. Radiomic features were extracted from T1, T2, fluid-attenuated inversion recovery, and T1 with gadolinium (T1GD) sequences. Low variance features were removed, and recursive feature elimination was used to select the most informative features. The SVM model was trained using a k-fold cross-validation approach. Furthermore, clinical parameters such as age, gender, and MGMT (O6-methylguanine-DNA methyltransferase) promoter methylation status were integrated to enhance prediction accuracy.
Results:
: The model showed reasonable results in terms of cross-validated area under the curve of 0.84 (95% confidence interval, 0.80–0.90) with (p<0.001) effectively categorizing patients into short and long survivors. Log-rank test (chi-square statistics) analysis for the developed model was 0.00029 along with the 1.20 Cohen’s d effect size. Most importantly, clinical data integration further refined the survival estimates, providing a more fitted prediction that considers individual patient characteristics by Kaplan-Meier curve with p-value <0.0001.
Conclusion
: The proposed method significantly enhances the predictive accuracy of OS outcomes in GBM, IDH-wildtype patients. By integrating detailed imaging features with key clinical indicators, this model offers a robust tool for personalized treatment planning, potentially improving OS.
5.Optimizing Glioblastoma, IDH-wildtype Treatment Outcomes : A Radiomics and Support Vector Machine-Based Approach to Overall Survival Estimation
Jiunn-Kai CHONG ; Priyanka JAIN ; Shivani PRASAD ; Navneet Kumar DUBEY ; Sanjay SAXENA ; Wen-Cheng LO
Journal of Korean Neurosurgical Society 2025;68(1):7-18
Objective:
: Glioblastoma multiforme (GBM), particularly the isocitrate dehydrogenase (IDH)-wildtype type, represents a significant clinical challenge due to its aggressive nature and poor prognosis. Despite advancements in medical imaging and its modalities, survival rates have not improved significantly, demanding innovative treatment planning and outcome prediction approaches.
Methods:
: This study utilizes a support vector machine (SVM) classifier using radiomics features to predict the overall survival (OS) of GBM, IDH-wildtype patients to short (<12 months) and long (≥12 months) survivors. A dataset comprising multi-parametric magnetic resonance imaging scans from 574 patients was analyzed. Radiomic features were extracted from T1, T2, fluid-attenuated inversion recovery, and T1 with gadolinium (T1GD) sequences. Low variance features were removed, and recursive feature elimination was used to select the most informative features. The SVM model was trained using a k-fold cross-validation approach. Furthermore, clinical parameters such as age, gender, and MGMT (O6-methylguanine-DNA methyltransferase) promoter methylation status were integrated to enhance prediction accuracy.
Results:
: The model showed reasonable results in terms of cross-validated area under the curve of 0.84 (95% confidence interval, 0.80–0.90) with (p<0.001) effectively categorizing patients into short and long survivors. Log-rank test (chi-square statistics) analysis for the developed model was 0.00029 along with the 1.20 Cohen’s d effect size. Most importantly, clinical data integration further refined the survival estimates, providing a more fitted prediction that considers individual patient characteristics by Kaplan-Meier curve with p-value <0.0001.
Conclusion
: The proposed method significantly enhances the predictive accuracy of OS outcomes in GBM, IDH-wildtype patients. By integrating detailed imaging features with key clinical indicators, this model offers a robust tool for personalized treatment planning, potentially improving OS.
6.Papillary muscles: morphological differences and their clinical correlations
Neha XALXO ; Simarpreet KAUR ; Mohit CHAUHAN ; Ekta SHARMA ; Laishram SOPHIA ; Sneh AGARWAL ; Pooja JAIN
Anatomy & Cell Biology 2025;58(1):44-53
The complex architecture of the papillary muscles (PMs) of the ventricles plays a crucial role in cardiac function and pathology. This comparative study aimed to examine the differences in PMs morphology between the right and left ventricles, focusing on their number, location, and shape. A total of 38 grossly normal hearts from donated bodies were dissected, and the number, location, and shape of PMs in both ventricles were observed. In this study, the left ventricle predominantly exhibited a single PM with 71.05% on the sternocostal surface and 57.89% on the diaphragmatic surface.The right ventricle showed a higher prevalence of single PM, at 89.47% on the sternocostal surface and 63.16% on the diaphragmatic surface. Broad-based shape of the PM emerged as the predominant variant, constituting 55.26% and 44.73% on the sternocostal and diaphragmatic surfaces of the left ventricle, respectively. In contrast, conical-shaped PM predominated in the right ventricle. Unique findings included “H” and “b” shaped muscles, conjoint PMs were observed exclusively in the left ventricle, and small papillary projections with direct tendinous cord attachment in the right ventricle. A distinct webbed shaped configuration of PM was exclusively observed in the right ventricle in only one specimen. No significant difference (P=0.84) was noted in muscle bellies between ventricular surfaces. This study emphasizes the complexity and variability in PM morphology, highlighting the importance of a thorough understanding of these structures for cardiothoracic surgeons, radiologists, and cardiologists to enhance interventional techniques.
7.Papillary muscles: morphological differences and their clinical correlations
Neha XALXO ; Simarpreet KAUR ; Mohit CHAUHAN ; Ekta SHARMA ; Laishram SOPHIA ; Sneh AGARWAL ; Pooja JAIN
Anatomy & Cell Biology 2025;58(1):44-53
The complex architecture of the papillary muscles (PMs) of the ventricles plays a crucial role in cardiac function and pathology. This comparative study aimed to examine the differences in PMs morphology between the right and left ventricles, focusing on their number, location, and shape. A total of 38 grossly normal hearts from donated bodies were dissected, and the number, location, and shape of PMs in both ventricles were observed. In this study, the left ventricle predominantly exhibited a single PM with 71.05% on the sternocostal surface and 57.89% on the diaphragmatic surface.The right ventricle showed a higher prevalence of single PM, at 89.47% on the sternocostal surface and 63.16% on the diaphragmatic surface. Broad-based shape of the PM emerged as the predominant variant, constituting 55.26% and 44.73% on the sternocostal and diaphragmatic surfaces of the left ventricle, respectively. In contrast, conical-shaped PM predominated in the right ventricle. Unique findings included “H” and “b” shaped muscles, conjoint PMs were observed exclusively in the left ventricle, and small papillary projections with direct tendinous cord attachment in the right ventricle. A distinct webbed shaped configuration of PM was exclusively observed in the right ventricle in only one specimen. No significant difference (P=0.84) was noted in muscle bellies between ventricular surfaces. This study emphasizes the complexity and variability in PM morphology, highlighting the importance of a thorough understanding of these structures for cardiothoracic surgeons, radiologists, and cardiologists to enhance interventional techniques.
8.Impact of an intraoral X-ray cone with positioning laser lights on reducing radiographic errors with the bisecting angle technique: A technical report
Suresh Kandagal VEERABHADRAPPA ; Jayanth Kumar VADIVEL ; Seema Yadav ROODMAL ; Ummul Khairah Bt. ISMAIL ; Vipin Kailasmal JAIN
Imaging Science in Dentistry 2025;55(1):65-71
Purpose:
The bisecting angle technique (BAT) encounters difficulties in positioning the X-ray cone and aligningthe central beam with the tooth. To address this, a rectangular laser featuring a pointed light was integrated into theintraoral X-ray cone. This study evaluated its effectiveness in improving radiograph quality and minimizing errors.
Materials and Methods:
Fifty fifth-year Bachelor of Dental Surgery students were divided into 3 groups. Group1 (n = 16) used the paralleling technique, group 2 (n = 17) employed the conventional BAT, and group 3 (n = 17) utilized the laser-assisted BAT on mannequins. Two independent oral radiologists assessed the quality of the radiographs, categorizing the images as either diagnostically acceptable or not acceptable. Inter-group comparisons of quality and error rates were conducted using the chi-square test (significance level: P<0.05).
Results:
The paralleling technique group produced 77.5% diagnostically acceptable radiographs and 22.5% that were not diagnostically acceptable. These percentages were 65.3% and 34.7%, respectively, in the conventional BAT group and 75.3% and 24.7%, respectively, in the laser-assisted BAT group, showing results similar to the paralleling technique group. The quality of radiographs differed significantly among the groups (P<0.05). The percentage of error-free radiographs was 38.1% in the paralleling technique group, 20.6% in the conventional BAT group, and 40.0% in the laser-assisted BAT group, with these differences being statistically significant (P<0.05).
Conclusion
The device produced higher acceptability and fewer radiographic errors than the conventional BATtechnique, suggesting accurate adjustment of the X-ray cone and central beam to the desired teeth.
9.Papillary muscles: morphological differences and their clinical correlations
Neha XALXO ; Simarpreet KAUR ; Mohit CHAUHAN ; Ekta SHARMA ; Laishram SOPHIA ; Sneh AGARWAL ; Pooja JAIN
Anatomy & Cell Biology 2025;58(1):44-53
The complex architecture of the papillary muscles (PMs) of the ventricles plays a crucial role in cardiac function and pathology. This comparative study aimed to examine the differences in PMs morphology between the right and left ventricles, focusing on their number, location, and shape. A total of 38 grossly normal hearts from donated bodies were dissected, and the number, location, and shape of PMs in both ventricles were observed. In this study, the left ventricle predominantly exhibited a single PM with 71.05% on the sternocostal surface and 57.89% on the diaphragmatic surface.The right ventricle showed a higher prevalence of single PM, at 89.47% on the sternocostal surface and 63.16% on the diaphragmatic surface. Broad-based shape of the PM emerged as the predominant variant, constituting 55.26% and 44.73% on the sternocostal and diaphragmatic surfaces of the left ventricle, respectively. In contrast, conical-shaped PM predominated in the right ventricle. Unique findings included “H” and “b” shaped muscles, conjoint PMs were observed exclusively in the left ventricle, and small papillary projections with direct tendinous cord attachment in the right ventricle. A distinct webbed shaped configuration of PM was exclusively observed in the right ventricle in only one specimen. No significant difference (P=0.84) was noted in muscle bellies between ventricular surfaces. This study emphasizes the complexity and variability in PM morphology, highlighting the importance of a thorough understanding of these structures for cardiothoracic surgeons, radiologists, and cardiologists to enhance interventional techniques.
10.A Radiologist’s Guide to IDH-Wildtype Glioblastoma for Efficient Communication With Clinicians: Part II–Essential Information on Post-Treatment Imaging
Philipp VOLLMUTH ; Philipp KARSCHNIA ; Felix SAHM ; Yae Won PARK ; Sung Soo AHN ; Rajan JAIN
Korean Journal of Radiology 2025;26(4):368-389
Owing to recent advancements in various postoperative treatment modalities, such as radiation, chemotherapy, antiangiogenic treatment, and immunotherapy, the radiological and clinical assessment of patients with isocitrate dehydrogenase-wildtype glioblastoma using post-treatment imaging has become increasingly challenging. This review highlights the challenges in differentiating treatment-related changes such as pseudoprogression, radiation necrosis, and pseudoresponse from true tumor progression and aims to serve as a guideline for efficient communication with clinicians for optimal management of patients with post-treatment imaging.

Result Analysis
Print
Save
E-mail