1.Xenon post-conditioning protects against spinal cord ischemia-reperfusion injury in rats by downregulating mTOR pathway and inhibiting endoplasmic reticulum stress-induced neuronal apoptosis.
Lan LUO ; Jia Qi TONG ; Lu LI ; Mu JIN
Journal of Southern Medical University 2022;42(8):1256-1262
OBJECTIVE:
The purpose of this study was to determine whether xenon post-conditioning affects mTOR signaling as well as endoplasmic reticulum stress (ERS)-apoptosis pathway in rats with spinal cord ischemia/reperfusion injury.
METHODS:
Fifty male rats were randomized equally into sham-operated group (Sham group), I/R model group (I/R group), I/R model+ xenon post-conditioning group (Xe group), I/R model+rapamycin (a mTOR signaling pathway inhibitor) treatment group (I/R+ Rapa group), and I/R model + xenon post- conditioning with rapamycin treatment group (Xe + Rapa group).. In the latter 4 groups, SCIRI was induced by clamping the abdominal aorta for 85 min followed by reperfusion for 4 h. Rapamycin (or vehicle) was administered by daily intraperitoneal injection (4 mg/kg) for 3 days before SCIRI, and xenon post-conditioning by inhalation of 1∶1 mixture of xenon and oxygen for 1 h at 1 h after initiation of reperfusion; the rats without xenon post-conditioning were given inhalation of nitrogen and oxygen (1∶ 1). After the reperfusion, motor function and histopathologic changes in the rats were examined. Western blotting and real-time PCR were used to detect the protein and mRNA expressions of GRP78, ATF6, IRE1α, PERK, mTOR, p-mTOR, Bax, Bcl-2 and caspase-3 in the spinal cord.
RESULTS:
The rats showed significantly lowered hind limb motor function following SCIRI (P < 0.01) with a decreased count of normal neurons, increased mRNA and protein expressions of GRP78, ATF6, IRE1α, PERK, and caspase-3, and elevated p-mTOR/mTOR ratio and Bax/Bcl-2 ratio (P < 0.01). Xenon post-conditioning significantly decreased the mRNA and protein levels of GRP78, ATF6, IRE1α, PERK and caspase-3 (P < 0.05 or 0.01) and reduced p-mTOR/mTOR and Bax/Bcl-2 ratios (P < 0.01) in rats with SCIRI; the mRNA contents and protein levels of GRP78 and ATF6 were significantly decreased in I/R+Rapa group (P < 0.01). Compared with those in Xe group, the rats in I/R+Rapa group and Xe+Rapa had significantly lowered BBB and Tarlov scores of the hind legs (P < 0.01), and caspase-3 protein level and Bax/Bcl-2 ratio were significantly lowered in Xe+Rapa group (P < 0.05 or 0.01).
CONCLUSION
By inhibiting ERS and neuronal apoptosis, xenon post- conditioning may have protective effects against SCIRI in rats. The mTOR signaling pathway is partially involved in this process.
Animals
;
Apoptosis
;
Caspase 3/metabolism*
;
Endoplasmic Reticulum Stress
;
Endoribonucleases/pharmacology*
;
Injections, Intraperitoneal
;
Male
;
Neurons/pathology*
;
Nitrogen/metabolism*
;
Oxygen/metabolism*
;
Protein Serine-Threonine Kinases
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
RNA, Messenger/metabolism*
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury/metabolism*
;
Sirolimus/pharmacology*
;
Spinal Cord Ischemia/pathology*
;
TOR Serine-Threonine Kinases/metabolism*
;
Xenon/therapeutic use*
;
bcl-2-Associated X Protein/metabolism*
2.Establishing a nonlethal and efficient mouse model of male gonadotoxicity by intraperitoneal busulfan injection.
Yun XIE ; Cun-Can DENG ; Bin OUYANG ; Lin-Yan LV ; Jia-Hui YAO ; Chi ZHANG ; Hai-Cheng CHEN ; Xiao-Yan LI ; Xiang-Zhou SUN ; Chun-Hua DENG ; Gui-Hua LIU
Asian Journal of Andrology 2020;22(2):184-191
An ideal animal model of azoospermia would be a powerful tool for the evaluation of spermatogonial stem cell (SSC) transplantation. Busulfan has been commonly used to develop such a model, but 30%-87% of mice die when administered an intraperitoneal injection of 40 mg kg-1. In the present study, hematoxylin and eosin staining, Western blot, immunofluorescence, and quantitative real-time polymerase chain reaction were used to test the effects of busulfan exposure in a mouse model that received two intraperitoneal injections of busulfan at a 3-h interval at different doses (20, 30, and 40 mg kg-1) on day 36 or a dose of 40 mg kg-1 at different time points (0, 9, 18, 27, 36, and 63 days). The survival rate of the mice was 100%. When the mice were treated with 40 mg kg-1 busulfan, dramatic SSC depletion occurred 18 days later and all of the germ cells were cleared by day 36. In addition, the gene expressions of glial cell line-derived neurotrophic factor (GDNF), fibroblast growth factor 2 (FGF2), chemokine (C-X-C Motif) ligand 12 (CXCL12), and colony-stimulating factor 1 (CSF1) were moderately increased by day 36. A 63-day, long-term observation showed the rare restoration of endogenous germ cells in the testes, suggesting that the potential period for SSC transplantation was between day 36 and day 63. Our results demonstrate that the administration of two intraperitoneal injections of busulfan (40 mg kg-1 in total) at a 3-h interval to mice provided a nonlethal and efficient method for recipient preparation in SSC transplantation and could improve treatments for infertility and the understanding of chemotherapy-induced gonadotoxicity.
Adult Germline Stem Cells/transplantation*
;
Animals
;
Azoospermia/chemically induced*
;
Busulfan/toxicity*
;
Disease Models, Animal
;
Infertility, Male/chemically induced*
;
Injections, Intraperitoneal
;
Male
;
Mice
;
Spermatogenesis/drug effects*
;
Spermatogonia/drug effects*
;
Stem Cell Transplantation/methods*
3.Hepcidin-orchestrated Hemogram and Iron Homeostatic Patterns in Two Models of Subchronic Hepatic injury.
Ibtsam GHEITH ; Abubakr EL-MAHMOUDY
Biomedical and Environmental Sciences 2019;32(3):153-161
OBJECTIVE:
This study was designed to evaluate hematological disorders and the orchestrating roles of hepcidin and IL-6 in rat models of thioacetamide (TAA) and carbon tetrachloride (CCl4) hepatotoxicity.
METHODS:
Rats were intraperitoneally injected with TAA (10 mg/100 g rat weight dissolved in isosaline) or CCl4 (100 μL/100 g rat weight diluted as 1:4 in corn oil) twice weekly for eight consecutive weeks to induce subchronic liver fibrosis. Blood and tissue samples were collected and analyzed.
RESULTS:
CCl4 but not TAA significantly decreased the RBCs, Hb, PCV, and MCV values with minimal alterations in other erythrocytic indices. Both hepatotoxins showed leukocytosis, granulocytosis, and thrombocytopenia. By the end of the experiment, the erythropoietin level increased in the CCl4 model. The serum iron, UIBC, TIBC, transferrin saturation%, and serum transferrin concentration values significantly decreased, whereas that of ferritin increased in the CCl4 model. TAA increased the iron parameters toward iron overload. RT-PCR analysis revealed increased expression of hepatic hepcidin and IL-6 mRNAs in the CCl4 model and suppressed hepcidin expression without significant effect on IL-6 in the TAA model.
CONCLUSION
These data suggest differences driven by hepcidin and IL-6 expression between CCl4 and TAA liver fibrosis models and are of clinical importance for diagnosis and therapeutics of liver diseases.
Animals
;
Blood Chemical Analysis
;
Carbon Tetrachloride
;
toxicity
;
Hepcidins
;
pharmacology
;
Injections, Intraperitoneal
;
Interleukin-6
;
pharmacology
;
Iron
;
blood
;
metabolism
;
Leukocytosis
;
chemically induced
;
therapy
;
Liver Cirrhosis
;
chemically induced
;
therapy
;
Male
;
Rats
;
Thioacetamide
;
toxicity
;
Thrombocytopenia
;
chemically induced
;
therapy
;
Transferrin
;
metabolism
4.The effect of alpha-lipoic acid on expression of VCAM-1 in type 2 diabetic rat
ISMAWATI ; MUKHYARJON ; Enikarmila ASNI ; Ilhami ROMUS
Anatomy & Cell Biology 2019;52(2):176-182
intraperitoneal injection of streptozotocin (50 mg/kg) followed by nicotinamide (110 mg/kg). ALA was administered at a dose of 60 mg/kg body weight/day throughout the feeding period of 3 weeks. Plasma oxLDL concentration was measured by enzyme-linked immunosorbent assays and expression of vascular cell adhesion molecule-1 (VCAM-1) was measured by immunohistochemistry. Expression of abdominal aortic adhesion molecule was assessed by calculation with Adobe Photoshop CS3. Analysis of variance test was used to compare the concentration of plasma oxLDL and expression of adhesion molecule. A P-value of 0.05 was considered statistically significant. Plasma oxLDL was lower in diabetic rat+ALA compared with the diabetic rat. Percentage of area VCAM-1 in DM+ALA group was lower than DM group. There were no significant differences between groups in intensity of VCAM-1. In conclusion, ALA showed protective effects against early atherosclerosis in diabetic rats.]]>
Animals
;
Atherosclerosis
;
Diabetes Complications
;
Diabetes Mellitus
;
Diabetes Mellitus, Type 2
;
Enzyme-Linked Immunosorbent Assay
;
Humans
;
Immunohistochemistry
;
Injections, Intraperitoneal
;
Lipoproteins
;
Male
;
Models, Animal
;
Niacinamide
;
Oxidative Stress
;
Plasma
;
Rats
;
Streptozocin
;
Thioctic Acid
;
Vascular Cell Adhesion Molecule-1
5.Effects of Intraperitoneal N-methyl-D-aspartate (NMDA) Administration on Nociceptive/Repetitive Behaviors in Juvenile Mice
Seonmin KIM ; Do Gyeong KIM ; Edson luck GONZALES ; Darine Froy N MABUNGA ; Dongpil SHIN ; Se Jin JEON ; Chan Young SHIN ; TaeJin AHN ; Kyoung Ja KWON
Biomolecules & Therapeutics 2019;27(2):168-177
Dysregulation of excitatory neurotransmission has been implicated in the pathogenesis of neuropsychiatric disorders. Pharmacological inhibition of N-methyl-D-aspartate (NMDA) receptors is widely used to model neurobehavioral pathologies and underlying mechanisms. There is ample evidence that overstimulation of NMDA-dependent neurotransmission may induce neurobehavioral abnormalities, such as repetitive behaviors and hypersensitization to nociception and cognitive disruption, pharmacological modeling using NMDA has been limited due to the induction of neurotoxicity and blood brain barrier breakdown, especially in young animals. In this study, we examined the effects of intraperitoneal NMDA-administration on nociceptive and repetitive behaviors in ICR mice. Intraperitoneal injection of NMDA induced repetitive grooming and tail biting/licking behaviors in a dose- and age-dependent manner. Nociceptive and repetitive behaviors were more prominent in juvenile mice than adult mice. We did not observe extensive blood brain barrier breakdown or neuronal cell death after peritoneal injection of NMDA, indicating limited neurotoxic effects despite a significant increase in NMDA concentration in the cerebrospinal fluid. These findings suggest that the observed behavioral changes were not mediated by general NMDA toxicity. In the hot plate test, we found that the latency of paw licking and jumping decreased in the NMDA-exposed mice especially in the 75 mg/kg group, suggesting increased nociceptive sensitivity in NMDA-treated animals. Repetitive behaviors and increased pain sensitivity are often comorbid in psychiatric disorders (e.g., autism spectrum disorder). Therefore, the behavioral characteristics of intraperitoneal NMDA-administered mice described herein may be valuable for studying the mechanisms underlying relevant disorders and screening candidate therapeutic molecules.
Adult
;
Animals
;
Autistic Disorder
;
Blood-Brain Barrier
;
Cell Death
;
Cerebrospinal Fluid
;
Grooming
;
Humans
;
Injections, Intraperitoneal
;
Mass Screening
;
Mice
;
Mice, Inbred ICR
;
N-Methylaspartate
;
Neurons
;
Nociception
;
Pathology
;
Synaptic Transmission
;
Tail
6.Docosahexaenoic Acid Inhibits Expression of Fibrotic Mediators in Mice With Chronic Pancreatitis
Sle LEE ; Yoo Kyung JEONG ; Joo Weon LIM ; Hyeyoung KIM
Journal of Cancer Prevention 2019;24(4):233-239
BACKGROUND: Chronic pancreatitis (CP) is an irreversible progressive disease that destroys exocrine parenchyma, which are replaced by fibrous tissue. As pancreatic fibrosis is a key feature of CP, reducing fibrotic protein content in the pancreas is crucial for preventing CP. Studies suggest that NF-κB facilitates the expression of fibrotic mediators in pancreas and protein kinase C-δ (PKC-δ) regulates NF-κB activation in stimulated pancreatic acinar cells. Docosahexaenoic acid (DHA) is an omega-3 fatty acid having anti-inflammatory and anti-fibrotic effects. It has been shown to inhibit NF-κB activity in cerulein-stimulated pancreatic acinar cells which is a cellular model of CP. In the present study, we investigated if DHA inhibits expression of fibrotic mediators by reducing PKC-δ and NF-κB expression in mouse pancreatic tissues with CP.METHODS: For six weeks, mice were weekly induced for acute pancreatitis to develop CP. Furthermore, acute pancreatitis was induced by hourly intraperitoneal injections of cerulein (50 μg/kg × 7). Mice were administered DHA (10 μM) via drinking water before and after CP induction.RESULTS: Cerulein-induced pancreatic damages like decreased pancreatic weight/total body weight, leukocyte infiltration, necrosis of acinar cells, and vacuolization were found to be inhibited by DHA. Additionally, DHA inhibited cerulein-induced fibrotic mediators like alpha-smooth muscle actin and fibronectin in pancreas. DHA reduced expression of PKC-δ and NF-κB p65 in pancreatic tissues of cerulein-treated mice.CONCLUSIONS: DHA may be beneficial in preventing CP by suppressing pancreatic expression of fibrotic mediators.
Acinar Cells
;
Actins
;
Animals
;
Body Weight
;
Ceruletide
;
Drinking Water
;
Fibronectins
;
Fibrosis
;
Injections, Intraperitoneal
;
Leukocytes
;
Mice
;
Necrosis
;
Pancreas
;
Pancreatitis
;
Pancreatitis, Chronic
;
Protein Kinases
7.Lipopolysaccharide induces neuroglia activation and NF-κB activation in cerebral cortex of adult mice
Ju Bin KANG ; Dong Ju PARK ; Murad Ali SHAH ; Myeong Ok KIM ; Phil Ok KOH
Laboratory Animal Research 2019;35(3):132-139
Lipopolysaccharide (LPS) acts as an endotoxin, releases inflammatory cytokines, and promotes an inflammatory response in various tissues. This study investigated whether LPS modulates neuroglia activation and nuclear factor kappa B (NF-κB)-mediated inflammatory factors in the cerebral cortex. Adult male mice were divided into control animals and LPS-treated animals. The mice received LPS (250 µg/kg) or vehicle via an intraperitoneal injection for 5 days. We confirmed a reduction of body weight in LPS-treated animals and observed severe histopathological changes in the cerebral cortex. Moreover, we elucidated increases of reactive oxygen species and oxidative stress levels in LPS-treated animals. LPS administration led to increases of ionized calcium-binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP) expression. Iba-1 and GFAP are well accepted as markers of activated microglia and astrocytes, respectively. Moreover, LPS exposure induced increases of NF-κB and pro-inflammatory factors, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Increases of these inflammatory mediators by LPS exposure indicate that LPS leads to inflammatory responses and tissue damage. These results demonstrated that LPS activates neuroglial cells and increases NF-κB-mediated inflammatory factors in the cerebral cortex. Thus, these findings suggest that LPS induces neurotoxicity by increasing oxidative stress and activating neuroglia and inflammatory factors in the cerebral cortex.
Adult
;
Animals
;
Astrocytes
;
Body Weight
;
Cerebral Cortex
;
Cytokines
;
Glial Fibrillary Acidic Protein
;
Humans
;
Injections, Intraperitoneal
;
Male
;
Mice
;
Microglia
;
Necrosis
;
Neuroglia
;
NF-kappa B
;
Oxidative Stress
;
Reactive Oxygen Species
8.Comparison of toxic responses to acetaminophen challenge in ICR mice originating from different sources
Tae Bin JEONG ; Joung Hee KIM ; Sou Hyun KIM ; Seunghyun LEE ; Seung Won SON ; Yong LIM ; Joon Yong CHO ; Dae Youn HWANG ; Kil Soo KIM ; Jae Hwan KWAK ; Young Suk JUNG
Laboratory Animal Research 2019;35(3):107-113
Acetaminophen (APAP) is the most common antipyretic analgesic worldwide. However, APAP overdose causes severe liver injury, especially centrilobular necrosis, in humans and experimental animals. At therapeutic dosage, APAP is mainly metabolized by sulfation and glucuronidation, and partly by cytochrome P450–mediated oxidation. However, APAP overdose results in production of excess reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI), by cytochromes P450; NAPQI overwhelms the level of glutathione (GSH), which could otherwise detoxify it. NAPQI binds covalently to proteins, leading to cell death. A number of studies aimed at the prevention and treatment of APAP-induced toxicity are underway. Rats are more resistant than mice to APAP hepatotoxicity, and thus mouse models are mainly used. In the present study, we compared the toxic responses induced by APAP overdose in the liver of ICR mice obtained from three different sources and evaluated the usability of the Korl:ICR stock established by the National Institute of Food and Drug Safety Evaluation in Korea. Administration of APAP (300 mg/kg) by intraperitoneal injection into male ICR mice enhanced CYP2E1 protein expression and depleted hepatic GSH level 2 h after treatment accompanied with significantly increased level of hepatic malondialdehyde, a product of lipid peroxidation. Regardless of the source of the mice, hepatotoxicity, as evidenced by activity of serum alanine aminotransferase, increased from 8 h and peaked at 24 h after APAP treatment. In summary, hepatotoxicity was induced after the onset of oxidative stress by overdose of APAP, and the response was the same over time among mice of different origins.
Acetaminophen
;
Alanine Transaminase
;
Animals
;
Cell Death
;
Cytochrome P-450 CYP2E1
;
Cytochromes
;
Glutathione
;
Humans
;
Injections, Intraperitoneal
;
Korea
;
Lipid Peroxidation
;
Liver
;
Male
;
Malondialdehyde
;
Mice
;
Mice, Inbred ICR
;
Necrosis
;
Oxidative Stress
;
Rats
9.Heat shock protein 70 increases cell proliferation, neuroblast differentiation, and the phosphorylation of CREB in the hippocampus
Hyun Jung KWON ; Woosuk KIM ; Hyo Young JUNG ; Min Soo KANG ; Jong Whi KIM ; Kyu Ri HAHN ; Dae Young YOO ; Yeo Sung YOON ; In Koo HWANG ; Dae Won KIM
Laboratory Animal Research 2019;35(4):154-164
In the present study, we investigated the effects of heat shock protein 70 (HSP70) on novel object recognition, cell proliferation, and neuroblast differentiation in the hippocampus. To facilitate penetration into the blood–brain barrier and neuronal plasma membrane, we created a Tat-HSP70 fusion protein. Eight-week-old mice received intraperitoneal injections of vehicle (10% glycerol), control-HSP70, or Tat-HSP70 protein once a day for 21 days. To elucidate the delivery efficiency of HSP70 into the hippocampus, western blot analysis for polyhistidine was conducted. Polyhistidine protein levels were significantly increased in control-HSP70- and Tat-HSP70-treated groups compared to the control or vehicle-treated group. However, polyhistidine protein levels were significantly higher in the Tat-HSP70-treated group compared to that in the control-HSP70-treated group. In addition, immunohistochemical study for HSP70 showed direct evidences for induction of HSP70 immunoreactivity in the control-HSP70- and Tat-HSP70-treated groups. Administration of Tat-HSP70 increased the novel object recognition memory compared to untreated mice or mice treated with the vehicle. In addition, the administration of Tat-HSP70 significantly increased the populations of proliferating cells and differentiated neuroblasts in the dentate gyrus compared to those in the control or vehicle-treated group based on the Ki67 and doublecortin (DCX) immunostaining. Furthermore, the phosphorylation of cAMP response element-binding protein (pCREB) was significantly enhanced in the dentate gyrus of the Tat-HSP70-treated group compared to that in the control or vehicle-treated group. Western blot study also demonstrated the increases of DCX and pCREB protein levels in the Tat-HSP70-treated group compared to that in the control or vehicle-treated group. In contrast, administration of control-HSP70 moderately increased the novel object recognition memory, cell proliferation, and neuroblast differentiation in the dentate gyrus compared to that in the control or vehicle-treated group. These results suggest that Tat-HSP70 promoted hippocampal functions by increasing the pCREB in the hippocampus.
Animals
;
Blotting, Western
;
Cell Membrane
;
Cell Proliferation
;
Cyclic AMP Response Element-Binding Protein
;
Dentate Gyrus
;
Heat-Shock Proteins
;
Hippocampus
;
Hot Temperature
;
HSP70 Heat-Shock Proteins
;
Injections, Intraperitoneal
;
Memory
;
Mice
;
Neurons
;
Phosphorylation
10.Cardioprotective Potential of an SGLT2 Inhibitor Against Doxorubicin-Induced Heart Failure
Chang Myung OH ; Sungsoo CHO ; Ji Yong JANG ; Hyeongseok KIM ; Sukyung CHUN ; Minkyung CHOI ; Sangkyu PARK ; Young Guk KO
Korean Circulation Journal 2019;49(12):1183-1195
BACKGROUND AND OBJECTIVES: Recent studies have shown that sodium-glucose co-transporter 2 (SGLT2) inhibitors reduce the risk of heart failure (HF)-associated hospitalization and mortality in patients with diabetes. However, it is not clear whether SGLT2 inhibitors have a cardiovascular benefit in patients without diabetes. We aimed to determine whether empagliflozin (EMPA), an SGLT2 inhibitor, has a protective role in HF without diabetes. METHODS: Cardiomyopathy was induced in C57BL/6J mice using intraperitoneal injection of doxorubicin (Dox). Mice with HF were fed a normal chow diet (NCD) or an NCD containing 0.03% EMPA. Then we analyzed their phenotypes and performed in vitro experiments to reveal underlying mechanisms of the EMPA's effects. RESULTS: Mice fed NCD with EMPA showed improved heart function and reduced fibrosis. In vitro studies showed similar results. Phloridzin, a non-specific SGLT inhibitor, did not show any protective effect against Dox toxicity in H9C2 cells. SGLT2 inhibitor can cause increase in blood ketone levels. Beta hydroxybutyrate (βOHB), which is well known ketone body associated with SGLT2 inhibitor, showed a protective effect against Dox in H9C2 cells and in Dox-treated mice. These results suggest elevating βOHB might be a convincing mechanism for the protective effects of SGLT2 inhibitor. CONCLUSIONS: SGLT2 inhibitors have a protective effect in Dox-induced HF in mice. This implied that SGLT2 inhibitor therapy could be a good treatment strategy even in HF patients without diabetes.
3-Hydroxybutyric Acid
;
Animals
;
Cardiomyopathies
;
Diet
;
Doxorubicin
;
Doxycycline
;
Fibrosis
;
Heart Failure
;
Heart
;
Hospitalization
;
Humans
;
In Vitro Techniques
;
Injections, Intraperitoneal
;
Mice
;
Mortality
;
Phenotype
;
Phlorhizin

Result Analysis
Print
Save
E-mail