1.Dehydrodiisoeugenol resists H1N1 virus infection via TFEB/autophagy-lysosome pathway.
Zhe LIU ; Jun-Liang LI ; Yi-Xiang ZHOU ; Xia LIU ; Yan-Li YU ; Zheng LUO ; Yao WANG ; Xin JIA
China Journal of Chinese Materia Medica 2025;50(6):1650-1658
The present study delves into the cellular mechanisms underlying the antiviral effects of dehydrodiisoeugenol(DEH) by focusing on the transcription factor EB(TFEB)/autophagy-lysosome pathway. The cell counting kit-8(CCK-8) was utilized to assess the impact of DEH on the viability of human non-small cell lung cancer cells(A549). The inhibitory effect of DEH on the replication of influenza A virus(H1N1) was determined by real-time quantitative polymerase chain reaction(RT-qPCR). Western blot was employed to evaluate the influence of DEH on the expression level of the H1N1 virus nucleoprotein(NP). The effect of DEH on the fluorescence intensity of NP was examined by the immunofluorescence assay. A mouse model of H1N1 virus infection was established via nasal inhalation to evaluate the therapeutic efficacy of 30 mg·kg~(-1) DEH on H1N1 virus infection. RNA sequencing(RNA-seq) was performed for the transcriptional profiling of mouse embryonic fibroblasts(MEFs) in response to DEH. The fluorescent protein-tagged microtubule-associated protein 1 light chain 3(LC3) was used to assess the autophagy induced by DEH. Western blot was employed to determine the effect of DEH on the autophagy flux of LC3Ⅱ/LC3Ⅰ under viral infection conditions. Lastly, the role of TFEB expression in the inhibition of DEH against H1N1 infection was evaluated in immortalized bone marrow-derived macrophage(iBMDM), both wild-type and TFEB knockout. The results revealed that the half-maximal inhibitory concentration(IC_(50)) of DEH for A549 cells was(87.17±0.247)μmol·L~(-1), and DEH inhibited H1N1 virus replication in a dose-dependent manner in vitro. Compared with the H1N1 virus-infected mouse model, the treatment with DEH significantly improved the body weights and survival time of mice. DEH induced LC3 aggregation, and the absence of TFEB expression in iBMDM markedly limited the ability of DEH to counteract H1N1 virus replication. In conclusion, DEH exerts its inhibitory activity against H1N1 infection by activating the TFEB/autophagy-lysosome pathway.
Influenza A Virus, H1N1 Subtype/genetics*
;
Animals
;
Autophagy/drug effects*
;
Humans
;
Mice
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Influenza, Human/metabolism*
;
Lysosomes/metabolism*
;
Orthomyxoviridae Infections/genetics*
;
Eugenol/pharmacology*
;
Antiviral Agents/pharmacology*
;
Virus Replication/drug effects*
;
A549 Cells
;
Male
2.Inhibition of cap-dependent endonuclease in influenza virus with ADC189: a pre-clinical analysis and phase I trial.
Jing WEI ; Yaping DENG ; Xiaoyun ZHU ; Xin XIAO ; Yang YANG ; Chunlei TANG ; Jian CHEN
Frontiers of Medicine 2025;19(2):347-358
ADC189 is a novel drug of cap-dependent endonuclease inhibitor. In our study, its antiviral efficacy was evaluated in vitro and in vivo, and compared with baloxavir marboxil and oseltamivir. A first-in-human phase I study in healthy volunteers included single ascending dose (SAD) and food effect (FE) parts. In the preclinical study, ADC189 showed potent antiviral activity against various types of influenza viruses, including H1N1, H3N2, influenza B virus, and highly pathogenic avian influenza, comparable to baloxavir marboxil. Additionally, ADC189 exhibited much better antiviral efficacy than oseltamivir in H1N1 infected mice. In the phase I study, ADC189 was rapidly metabolized to ADC189-I07, and its exposure increased proportionally with the dose. The terminal elimination half-life (T1/2) ranged from 76.69 to 98.28 hours. Of note, food had no effect on the concentration, clearance, and exposure of ADC189. It was well tolerated, with few treatment-emergent adverse events (TEAEs) reported and no serious adverse events (SAEs). ADC189 demonstrated excellent antiviral efficacy both in vitro and in vivo. It was safe, well-tolerated, and had favorable pharmacokinetic characteristics in healthy volunteers, supporting its potential for single oral dosing in clinical practice.
Humans
;
Antiviral Agents/therapeutic use*
;
Animals
;
Male
;
Adult
;
Mice
;
Female
;
Endonucleases/antagonists & inhibitors*
;
Influenza, Human/drug therapy*
;
Young Adult
;
Dibenzothiepins/pharmacology*
;
Oseltamivir/pharmacology*
;
Middle Aged
;
Triazines/pharmacology*
;
Thiepins/pharmacology*
;
Influenza B virus/drug effects*
;
Influenza A Virus, H1N1 Subtype/drug effects*
;
Pyridines/pharmacology*
;
Morpholines
;
Pyridones
3.Expression of influenza A H1N1 and H3N2 viruses Mosaic-HA1 antigens and evaluation of its immunogenicity in mice.
Fei HAN ; Pengtao JIAO ; Runshan LIN ; Heqiao LI ; Jianing MA ; Hanzhong PEI ; He ZHANG ; Lei SUN ; Tingrong LUO ; Min ZHENG ; Wenhui FAN ; Wenjun LIU
Chinese Journal of Biotechnology 2024;40(11):4042-4056
Vaccination is the most effective measure for reducing and preventing influenza and related complications. In this study, we analyzed the mutation trend and the antigen dominant site changes of the amino acid sequence of hemagglutinin subunit 1 (HA1) of human influenza A virus (IAV) in the northern hemisphere from 2012 to 2022. According to the HA1 sequences of A/Darwin/6/2021 (H3N2) and A/Wisconsin/588/2019 (H1N1) recommended by the World Health Organization in the 2022 influenza season in northern hemisphere, we employed the mosaic algorithm to design three Mosaic-HA1 antigens through stepwise substitution. Mosaic-HA1 was expressed and purified in 293F cells and then mixed with the alum adjuvant at a volume ratio of 1:1. The mixture was used to immunize BALB/c mice, and the immunogenicity was evaluated. Enzyme-linked immunosorbent assay showed that Mosaic-HA1 induced the production of IgG targeting two types of HA1, the specific IgG titers for binding to H3 protein and H1 protein reached 105 and 103 respectively. The challenge test showed that Mosaic-HA1 protected mice from H3N2 or H1N1. This study designs the vaccines by recombination of major antigenic sites in different subtypes of IAV, giving new insights into the development of multivalent subunit vaccines against influenza.
Animals
;
Influenza A Virus, H1N1 Subtype/genetics*
;
Influenza A Virus, H3N2 Subtype/genetics*
;
Mice, Inbred BALB C
;
Mice
;
Influenza Vaccines/genetics*
;
Hemagglutinin Glycoproteins, Influenza Virus/genetics*
;
Humans
;
Antibodies, Viral/blood*
;
Antigens, Viral/genetics*
;
Immunoglobulin G/immunology*
;
Female
;
Orthomyxoviridae Infections/prevention & control*
;
HEK293 Cells
4.Structural characterization of PCP-Ⅰ from Poria as vaccine adjuvant and its hydrolytic oligosaccharide.
Jia-Nan GU ; Gui-Xin LIU ; Shuai LI ; Hao MA ; Jun-Jie SHAN
China Journal of Chinese Materia Medica 2023;48(16):4429-4437
Poria is an important medical herb in clinic. The authors isolated a polysaccharide(PCP-Ⅰ) from Poria in previous studies, which is composed of galactose, mannose, fucose and glucose. PCP-Ⅰ exhibited significant adjuvant effects on H1N1 influenza vaccine, hepatitis B surface antigen and anthrax protective antigen, and its adjuvant activity was stronger than aluminium adjuvant. However, little is known about the chemical structure of PCP-Ⅰ at present. In this study, weak acid hydrolysis was used to obtain the backbone oligosaccharide of PCP-Ⅰ. Then periodate oxidation, Smith degradation, methylation analysis, Fourier transform infrared spectroscopy(FT-IR), nuclear magnetic resonance(NMR) and gas chromatography-mass spectrometry(GC-MS) were performed to investigate the chemical structural features of PCP-Ⅰ and its hydrolytic oligosaccharide(PCP-Ⅰ-hy-1). These results suggested that the backbone of PCP-Ⅰ was composed of galactose with α anomeric carbon and β anomeric carbon. The linking residues of galactan are(1→),(l→6) and(1→2,6).
Adjuvants, Vaccine
;
Poria
;
Hydrolysis
;
Spectroscopy, Fourier Transform Infrared
;
Galactose
;
Influenza A Virus, H1N1 Subtype
;
Polysaccharides/chemistry*
;
Oligosaccharides
;
Carbon
5.Epidemiologic characteristics and influencing factors of influenza outbreaks in Guangdong Province, 2015-2022.
Ya Li ZHUANG ; Jie LU ; Shu Kai WU ; Zhan Hui ZHANG ; Zhi Mei WEI ; Yi Hong LI ; Ting HU ; Min KANG ; Ai Ping DENG
Chinese Journal of Epidemiology 2023;44(6):942-948
Objective: To grasp the epidemiological characteristics of influenza outbreaks in Guangdong Province by analyzing the outbreaks of influenza-like cases reported in Guangdong Province from January 2015 to the end of August 2022. Methods: In response to the outbreak of epidemics in Guangdong Province from 2015 to 2022, information on on-site epidemic control was collected, and epidemiological analysis was conducted to describe the characteristics of the epidemics. The factors that influence the intensity and duration of the outbreak were determined through a logistic regression model. Results: A total of 1 901 influenza outbreaks were reported in Guangdong Province, with an overall incidence of 2.05%. Most outbreak reports occurred from November to January of the following year (50.24%, 955/1 901) and from April to June (29.88%, 568/1 901). A total of 59.23% (1 126/1 901) of the outbreaks were reported in the Pearl River Delta region, and primary and secondary schools were the main places where outbreaks occurred (88.01%, 1 673/1 901). Outbreaks with 10-29 cases were the most common (66.18%, 1 258/1 901), and most outbreaks lasted less than seven days (50.93%,906/1 779). The size of the outbreak was related to the nursery school (aOR=0.38, 95%CI:0.15-0.93), the Pearl River Delta region (aOR=0.60, 95%CI:0.44-0.83), the time interval between the onset of the first case and the time of report (>7 days compared with ≤3 days: aOR=3.01, 95%CI:1.84-4.90), the influenza A(H1N1) (aOR=2.02, 95%CI:1.15-3.55) and the influenza B (Yamagata) (aOR=2.94, 95%CI: 1.50-5.76). The duration of outbreaks was related to school closures (aOR=0.65, 95%CI: 0.47-0.89), the Pearl River Delta region (aOR=0.65, 95%CI: 0.50-0.83) and the time interval between the onset of the first case and the time of report (>7 days compared with ≤3 days: aOR=13.33, 95%CI: 8.80-20.19; 4-7 days compared with ≤3 days: aOR=2.56, 95%CI: 1.81-3.61). Conclusions: An influenza outbreak in Guangdong Province exhibits two peaks, one in the winter and spring seasons and the other in the summer. Primary and secondary schools are high-risk areas, and early reporting of outbreaks is critical for controlling influenza outbreaks in schools. Furthermore, comprehensive measures should be taken to prevent the spread of the epidemic.
Humans
;
Influenza A Virus, H1N1 Subtype
;
Influenza, Human/epidemiology*
;
Disease Outbreaks
;
Epidemics
;
China/epidemiology*
6.Connotation of Xiao Chaihu Decoction combined with Maxing Shigan Decoction based on severe cases and modern pathophysiological mechanism and application for severe pulmonary infection and acute exacerbation of chronic obstructive pulmonary disease in critical care medicine.
China Journal of Chinese Materia Medica 2023;48(10):2606-2612
Xiao Chaihu Decoction combined with Maxing Shigan Decoction is a classic herbal formula. All of them are derived from Treatise on Cold Damage(Shang Han Lun) by ZHANG Zhong-jing. This combination has the effects of harmonizing lesser yang, relieving exterior syndrome, clearing lung heat, and relieving panting. It is mainly used for treating the disease involving the triple-Yang combination of diseases and accumulation of pathogenic heat in the lung. Xiao Chaihu Decoction combined with Maxing Shigan Decoction is a classic combination for the treatment of exogenous diseases involving the triple-Yang combination. They are commonly used in exogenous diseases, especially in the north of China. This combination is also the main treatment strategy for coronavirus disease 2019(COVID-19) accompanied by fever and cough. Maxing Shigan Decoction is a classical herbal formula for treating the syndrome of phlegm-heat obstructing the lung. "Dyspnea after sweating" suggests the accumulation of pathogenic heat in the lung. Patients with mild symptoms may develop cough and asthma along with forehead sweating, and those in critical severe may develop whole-body sweating, especially the front chest. Modern medicine believes that the above situation is related to lung infection. "Mild fever" refers to syndromes rather than pathogenesis. It does not mean that the heat syndrome is not heavy, instead, it suggests that severe heat and inflammation have occurred. The indications of Xiao Chaihu Decoction combined with Maxing Shigan Decoction are as follows.(1) In terms of diseases, it is suitable for the treatment of viral pneumonia, bronchopneumonia, lobar pneumonia, mycoplasma pneumonia, COVID-19 infection, measles with pneumonia, severe acute respiratory syndrome(SARS), avian influenza, H1N1 influenza, chronic obstructive pulmonary disease with acute exacerbation, pertussis, and other influenza and pneumonia.(2) In terms of syndromes, it can be used for the syndromes of bitter mouth, dry pharynx, vertigo, loss of appetite, vexation, vomiting, and fullness and discomfort in the chest and hypochondrium. It can also be used to treat alternate attacks of chill and fever and different degrees of fever, as well as chest tightness, cough, asthma, expectoration, dry mouth, wanting cold drinks, feeling agitated, sweating, yellow urine, dry stool, red tongue, yellow or white fur, and floating, smooth, and powerful pulse, especially the right wrist pulse.
Animals
;
Humans
;
Cough
;
Syndrome
;
Influenza A Virus, H1N1 Subtype
;
Influenza, Human
;
COVID-19
;
Drugs, Chinese Herbal/pharmacology*
;
Lung
;
Pulmonary Disease, Chronic Obstructive/drug therapy*
;
Asthma
;
Critical Care
;
Medicine, Chinese Traditional
7.Genetic characteristics of the first human infection with the G4 genotype eurasian avian-like H1N1 swine influenza virus in Shaanxi Province,China.
Long QIN ; Jun Jun ZHANG ; Bin CHEN ; Shi Feng WANG ; Peng Bo YU
Chinese Journal of Preventive Medicine 2023;57(9):1434-1439
Objective: To analyze the genetic characteristics of the first human infection with the G4 genotype of Eurasian avian H1N1 swine influenza virus (EA H1N1 SIV) in Shaanxi Province. Methods: The patient's throat swab samples were collected, and MDCK cells were inoculated for virus isolation to obtain the virus strain. The whole genome deep sequencing method was used to obtain the eight gene segments of the isolated strain. The nucleotide homology analysis was conducted through the Blast program in the GenBank database, and a phylogenetic tree was constructed to analyze the genetic characteristics of the virus. Results: The throat swab specimens of the case were confirmed as EA H1N1 SIV in the laboratory, and the isolated strain was named A/Shaanxi-Weicheng/1351/2022(H1N1v). Homology analysis found that the PB2, NP, HA, NA, and M genes of this isolate had the highest nucleotide homology with A/swing/Beijing/0301/2018 (H1N1), about 98.29%, 98.73%, 97.41%, 97.52%, and 99.08%, respectively. The phylogenetic tree showed that the isolate belonged to G4 genotype EA H1N1 SIV, with PB2, PB1, PA, NP and M genes from pdm/09 H1N1, HA and NA genes from EA H1N1, and NS gene from Triple-reassortant H1N1. The cleavage site of the HA protein was IPSIQSR↓G, which was the molecular characteristic of the low pathogenic influenza virus. No amino acid mutations associated with neuraminidase inhibitors were found in the NA protein. PB2 protein 701N mutation, PA protein P224S mutation, NP protein Q357K mutation, M protein P41A mutation, and NS protein 92D all indicated its enhanced adaptability to mammals. Conclusion: The patient is the first human infection with G4 genotype EA H1N1 SIV in Shaanxi province. The virus is low pathogenic, but its adaptability to mammals is enhanced. Therefore, it is necessary to strengthen the monitoring of such SIVs.
Swine
;
Humans
;
Animals
;
Influenza A Virus, H1N1 Subtype/genetics*
;
Phylogeny
;
Genotype
;
Influenza A virus
;
China
;
Birds
;
Mammals
8.Technical guidelines for seasonal influenza vaccination in China (2023-2024).
Chinese Journal of Epidemiology 2023;44(10):1507-1530
Influenza is an acute respiratory infectious disease that is caused by the influenza virus, which seriously affects human health. The influenza virus has frequent antigenic drifts that can facilitate escape from pre-existing population immunity and lead to the rapid spread and annual seasonal epidemics. Influenza outbreaks occur in crowded settings, such as schools, kindergartens, and nursing homes. Seasonal influenza epidemics can cause 3-5 million severe cases and 290 000-650 000 respiratory disease-related deaths worldwide every year. Pregnant women, infants, adults aged 60 years and older, and individuals with comorbidities or underlying medical conditions are at the highest risk of severe illness and death from influenza. China has experienced a influenza epidemic season dominated by A (H1N1) pdm09 subtype from mid-February to the end of April 2023, and the intensity was slightly higher than the epidemic year before the COVID-19. We may face the risk of interaction or co-circulation of respiratory infectious diseases such as COVID-19 and influenza during the coming season. Annual influenza vaccination is an effective way to prevent influenza, reduce influenza-related severe illness and death, and reduce the harm caused by influenza-related diseases and the use of medical resources. The currently approved influenza vaccines in China include trivalent inactivated influenza vaccine (IIV3), quadrivalent inactivated influenza vaccine (IIV4), and trivalent live attenuated influenza vaccine (LAIV3). IIV3 and IIV4 are produced as a split virus vaccine and subunit vaccine; LAIV3 is a live, attenuated virus vaccine. The influenza vaccine is a non-immunization program vaccine, which means that residents are voluntarily vaccinated. China CDC has issued "Technical guidelines for seasonal influenza vaccination in China" every year from 2018 to 2022. Over the past year, new research evidence has been published at home and abroad, and new influenza vaccines have been approved for marketing in China. To better guide the prevention and control of influenza and vaccination in China, the National Immunization Advisory Committee (NIAC) Technical Working Group (TWG), Influenza Vaccination TWG updated and revised the 2022-2023 technical guidelines with the latest research progress into the "Technical guidelines for seasonal influenza vaccination in China (2023-2024)." The new version has updated five key areas: (1) new research evidence-especially research conducted in China-has been added, including new estimates of the burden of influenza disease, assessments of influenza vaccine effectiveness and safety, and analyses of the cost-effectiveness of influenza vaccination; (2) policies and measures for influenza prevention and control were issued by the National Health Commission of the People's Republic of China and National Disease Control and Prevention Administrationy over the past year; (3) influenza vaccines approved for marketing in China this year; (4) composition of trivalent and quadrivalent influenza vaccines for the 2023-2024 northern hemisphere influenza season; and (5) recommendations for influenza vaccination during the 2023-2024 influenza season. The 2023-2024 guidelines recommend that all people aged 6 months and above who have no contraindications should get the influenza vaccination. For adults aged ≥18 years, co-administration of inactivated SARS-CoV-2 and influenza vaccines in separate arms is acceptable regarding immunogenicity and reactogenicity. For people under 18 years of age, there should be at least 14 days between influenza vaccination and COVID-19 vaccination. The guidelines express no preference for influenza vaccine type or manufacturer-any approved, age-appropriate influenza vaccines can be used. Combining the influenza epidemic tendency and the prevention and control strategy of multiple diseases, the technical guidelines recommend priority vaccination of the following high-risk groups during the upcoming 2023-2024 influenza season to minimize harm from influenza: (1) healthcare workers, including clinical doctors and nurses, public health professionals, and quarantine professionals; (2) adults ≥60 years of age; (3) individuals with comorbidities; (4) people living in nursing homes or welfare homes and staff who take care of vulnerable, at-risk individuals; (5) pregnant women; (6) children 6-59 months of age; (7) family members and caregivers of infants under 6 months of age; and (8) people who work in nursery institutions, primary and secondary schools, and supervision places. Children 6 months to 8 years of age who receive inactivated influenza vaccine for the first time should receive two doses, with an inter-dose interval of 4 or more weeks. Children who previously received the influenza vaccine and anyone aged 9 years or older need only one dose. LAIV is recommended only for a single dose regardless of the previous influenza vaccination. Vaccination should begin as soon as influenza vaccines become available, and preferably should be completed before the onset of the local influenza season. Repeated influenza vaccination during a single influenza season is not recommended. Vaccination clinics should provide immunization services throughout the epidemic season. Pregnant women can receive inactivated influenza vaccine at any stage of pregnancy. These guidelines are intended for use by staff of CDCs, healthcare workers, maternity and child care institutions and immunization clinic staff members who work on influenza control and prevention. The guidelines will be updated periodically as new evidence becomes available.
Adult
;
Infant
;
Female
;
Humans
;
Pregnancy
;
Middle Aged
;
Aged
;
Adolescent
;
Infant, Newborn
;
Influenza Vaccines
;
Influenza, Human/drug therapy*
;
Seasons
;
COVID-19 Vaccines
;
Influenza A Virus, H1N1 Subtype
;
Vaccination
;
COVID-19
;
China/epidemiology*
;
Vaccines, Attenuated
9.Genetic characteristics of the first human infection with the G4 genotype eurasian avian-like H1N1 swine influenza virus in Shaanxi Province,China.
Long QIN ; Jun Jun ZHANG ; Bin CHEN ; Shi Feng WANG ; Peng Bo YU
Chinese Journal of Preventive Medicine 2023;57(9):1434-1439
Objective: To analyze the genetic characteristics of the first human infection with the G4 genotype of Eurasian avian H1N1 swine influenza virus (EA H1N1 SIV) in Shaanxi Province. Methods: The patient's throat swab samples were collected, and MDCK cells were inoculated for virus isolation to obtain the virus strain. The whole genome deep sequencing method was used to obtain the eight gene segments of the isolated strain. The nucleotide homology analysis was conducted through the Blast program in the GenBank database, and a phylogenetic tree was constructed to analyze the genetic characteristics of the virus. Results: The throat swab specimens of the case were confirmed as EA H1N1 SIV in the laboratory, and the isolated strain was named A/Shaanxi-Weicheng/1351/2022(H1N1v). Homology analysis found that the PB2, NP, HA, NA, and M genes of this isolate had the highest nucleotide homology with A/swing/Beijing/0301/2018 (H1N1), about 98.29%, 98.73%, 97.41%, 97.52%, and 99.08%, respectively. The phylogenetic tree showed that the isolate belonged to G4 genotype EA H1N1 SIV, with PB2, PB1, PA, NP and M genes from pdm/09 H1N1, HA and NA genes from EA H1N1, and NS gene from Triple-reassortant H1N1. The cleavage site of the HA protein was IPSIQSR↓G, which was the molecular characteristic of the low pathogenic influenza virus. No amino acid mutations associated with neuraminidase inhibitors were found in the NA protein. PB2 protein 701N mutation, PA protein P224S mutation, NP protein Q357K mutation, M protein P41A mutation, and NS protein 92D all indicated its enhanced adaptability to mammals. Conclusion: The patient is the first human infection with G4 genotype EA H1N1 SIV in Shaanxi province. The virus is low pathogenic, but its adaptability to mammals is enhanced. Therefore, it is necessary to strengthen the monitoring of such SIVs.
Swine
;
Humans
;
Animals
;
Influenza A Virus, H1N1 Subtype/genetics*
;
Phylogeny
;
Genotype
;
Influenza A virus
;
China
;
Birds
;
Mammals
10.Perceived stress and associated factors among healthcare workers in a primary healthcare setting: the Psychological Readiness and Occupational Training Enhancement during COVID-19 Time (PROTECT) study.
Eng Sing LEE ; Shu Yun TAN ; Poay Sian Sabrina LEE ; Hui Li KOH ; Shok Wen Winnie SOON ; Kang SIM ; Wern Ee TANG ; Phui-Nah CHONG
Singapore medical journal 2022;63(1):20-27
INTRODUCTION:
Disease outbreaks such as the COVID-19 pandemic significantly heighten the psychological stress of healthcare workers (HCWs). The objective of this study was to understand the factors contributing to the perceived stress levels of HCWs in a public primary care setting during the COVID-19 pandemic, including their training, protection and support (TPS), job stress (JS), and perceived stigma and interpersonal avoidance.
METHODS:
This cross-sectional study using an electronic self-administered questionnaire was conducted at the National Healthcare Group Polyclinics in March 2020. Data was collected anonymously. Analysis was performed using regression modelling.
RESULTS:
The response rate was 69.7% (n = 1,040). The mean perceived stress level of HCWs in various departments ranged from 17.2 to 20.3. Respondents who reported higher perceived stress were those who made alternative living arrangements, were more affected by the current pandemic, reported higher JS and were Muslims. Respondents who reported lower perceived stress were those who had been through the severe acute respiratory syndrome epidemic in 2003 and H1N1 pandemic in 2009 as HCWs, and those who had higher confidence in the organisation's TPS.
CONCLUSION
All HCWs, regardless of their scope of work, were similarly stressed by the current pandemic compared to the general population. Improving the confidence of HCWs in their training, protection and the support of personal protective equipment, and retaining experienced HCWs who can provide advice and emotional support to younger colleagues are important. Adequate psychological support for HCWs in the pandemic can be transformed into reserves of psychological resilience for future disease outbreaks.
COVID-19/epidemiology*
;
Cross-Sectional Studies
;
Health Personnel/psychology*
;
Humans
;
Influenza A Virus, H1N1 Subtype
;
Pandemics
;
Primary Health Care
;
SARS-CoV-2
;
Stress, Psychological

Result Analysis
Print
Save
E-mail