1.RHPN2 is highly expressed in osteosarcoma cells to promote cell proliferation and migration and inhibit apoptosis.
Zhi Yu LIU ; Feng Zhu FANG ; Jing LI ; Guang Yue ZHAO ; Quan Jin ZANG ; Feng ZHANG ; Jun DIE
Journal of Southern Medical University 2022;42(9):1367-1373
OBJECTIVE:
To screen for aberrantly expressed genes in osteosarcoma cells and investigate the role of RHPN2 in regulating the proliferation, apoptosis, migration and tumorigenic abilities of osteosarcoma cells.
METHODS:
We used GEO2R to analyze the differential gene expression profile between osteosarcoma cells and normal cells in the GSE70414 dataset. RTqPCR and Western blotting were performed to detect RHPN2 expression in osteosarcoma cell lines MG-63, 143B and SAOS2. Two RHPN2-shRNA and a control NC-shRNA were designed to silence the expression of RHPN2 in 143B cells, and CCK8 assay, colony-forming assay, annexin V-FITC/PI staining and scratch assays were carried out to examine the changes in proliferation, apoptosis and migration of the cells. We also established nude mouse models bearing osteosarcoma xenografts derived 143B cells and RHPN2-shRNA-transfected 143B cells, and assessed the effect of RHPN2 silencing on osteosarcoma cell tumorigenesis using HE staining. Kaplan-Meier survival curves were used to analyze the correlation between RHPN2 expression and survival outcomes of patients with osteosarcoma.
RESULTS:
RHPN2 expression was significantly upregulated in osteosarcoma cell lines MG-63, 143B and SAOS2 (P < 0.01). Silencing of RHPN2 significantly inhibited the proliferation and migration of 143B cells in vitro, promoted cell apoptosis (P < 0.01), and suppressed tumorigenic capacity of the cells in nude mice. A high expression of RHPN2 was significantly correlated with a poor prognosis of patients with osteosarcoma (P < 0.05).
CONCLUSION
RHPN2 is highly expressed in osteosarcoma cells to promote cell proliferation and migration and inhibits cell apoptosis. A high expression of RHPN2 is associated with a poorer prognosis of the patients with osteosarcoma.
Adaptor Proteins, Signal Transducing/metabolism*
;
Animals
;
Apoptosis
;
Bone Neoplasms/metabolism*
;
Carcinogenesis
;
Cell Line, Tumor
;
Cell Movement/physiology*
;
Cell Proliferation/physiology*
;
Humans
;
Immediate-Early Proteins
;
Mice
;
Mice, Nude
;
Osteosarcoma/metabolism*
;
RNA, Small Interfering/genetics*
2.Enhancement of B-cell translocation gene-2 inhibits proliferation and metastasis of colon cancer cells.
Zhongmin JIANG ; Liang ZHANG ; Lidong ZHANG ; Shoufeng WANG ; Mo ZHENG ; Yanxia LI ; Xiaozhi LIU ; Email: LXZ7997@126.COM.
Chinese Journal of Oncology 2015;37(5):330-335
OBJECTIVETo inhibit the proliferation and metastasis of colon cancer cells by increasing the expression level of B-cell translocation gene-2 (BTG2).
METHODSWestern blot assay was used to detect the expression level of BTG2 protein in the normal intestinal epithelial HIEC cells and three colon cancer cell lines SW620, HT-29 and LS174T. The expression of BTG2 protein in normal colonic epithelial tissue, colon adenoma and colon cancer tissue was detected by immunohistochemistry. The plasmid with BTG2 gene full-length sequence was transfected into colon cancer SW620 cells, and the expression of BTG2 protein was detected by Western blot. The cell growth curve was drawn by MTT test. The Ki-67-positive rate was calculated using immunofluorescence staining. The cell migration of colon cancer cells was detected by scratch test and Transwell double chamber culture system, and the pseudopodia growth of tumor cells was detected by Matrigel 3D culture system.
RESULTSWestern blot results showed that BTG2 relative expression levels were 0.83 ± 0.12, 0.18 ± 0.04, 0.20 ± 0.05 and 0.36 ± 0.07 in normal human intestinal epithelial cells HIEC, and human colon cancer cell line SW620, HT-29 and LS174T, respectively. The results of immunohistochemistry showed that the positive expression of BTG2 protein in normal colorectal tissue, colorectal adenoma and colorectal carcinoma tissues were 82.5% (33/40), 77.5%(31/40) and 17.5% (7/40), respectively, with a significant difference between two groups (P < 0.05). Immunofluorescence results showed that the positive rate of Ki-67 in the control group, empty vector group and BTG2 transfection group was (76.2 ± 8.0)%, (81.4 ± 9.7)% and (50.1 ± 7.1)%, respectively, showing a significant difference between two groups (P < 0.05). The scratch test results showed that in the control group, empty vector group and BTG2 transfection group, the distance of SW620 cells between two sides was (79.27 ± 11.24) µm, (80.65 ± 12.17) µm and (124.77 ± 19.63) µm, respectively, with a significant difference between two groups (P < 0.05). Transwell results showed that in the control group, empty plasmid group and BTG2 transfection group, the SW620 cell migration rate was (78.5 ± 13.1)%, (73.2 ± 12.9)% and (47.4 ± 9.1)%, respectively, showing a significant difference between two groups (P < 0.05). The number of neurospheres of BTG2 transfection group was decreased SW620, which had poor ductility.
CONCLUSIONSBTG2 gene is involved in colon cancer cell proliferation and metastasis, and effectively restores the function of BTG2 protein. Therefore, it may be expected to become a new option in gene therapy for colon cancer.
B-Lymphocytes ; physiology ; Cell Cycle ; Cell Line, Tumor ; Cell Movement ; Cell Proliferation ; genetics ; Colonic Neoplasms ; Genetic Vectors ; Humans ; Immediate-Early Proteins ; genetics ; Immunohistochemistry ; Plasmids ; Transfection ; Tumor Suppressor Proteins ; genetics
3.Construction of a new oncolytic virus oHSV2hGM-CSF and its anti-tumor effects.
Gui-Lan SHI ; Xiu-Fen ZHUANG ; Xiang-Ping HAN ; Jie LI ; Yu ZHANG ; Shu-Ren ZHANG ; Bin-Lei LIU
Chinese Journal of Oncology 2012;34(2):89-95
OBJECTIVEThe aim of this study was to construct a new oncolytic virus oHSV2hGM-CSF and evaluate its oncolytic activity in vitro and in vivo in parallel with oHSV1hGM-CSF.
METHODSoHSV2hGM-CSF was a replication-competent, attenuated HSV2 based on the HG52 virus (an HSV2 strain). It was engineered to be specific for cancer by deletion of the viral genes ICP34.5 and ICP47 and insertion of the gene encoding hGM-CSF. To measure the in vitro killing effect of the virus, 15 human tumor cell lines (HeLa, Eca-109, PG, HepG2, SK/FU, CNE-2Z, PC-3, SK-OV3, A-549, 786-0, MCF-7, Hep-2, HT-29, SK-Mel-28, U87-MG) and mouse melanoma (B16R) cell line were seeded into 24-well plates and infected with viruses at MOI = 1 (multiplicity of infection, MOI), or left uninfected. The cells were harvested 24 and 48 hours post infection, and observed under the microscope. For animal studies, the oncolytic viruses were administered intratumorally (at 3-day interval) at a dose of 2.3 x 10(6) PFU (plaque forming unit, PFU) for three times when the tumor volume reached 7-8 mm3. The tumor volume was measured at 3-day intervals and animal survival was recorded.
RESULTSBoth oHSV2hCM-CSFand oHSV1hGM-CSF induced widespread cytopathic effects at 24 h after infection. OHSV2hGM-CSF, by contrast, produced more plaques with a syncytial phenotype than oHSV1hGM-CSF. In the in vitro killing experiments for the cell lines HeLa, HepG2, SK-Mel-28, B16R and U87-MG, oHSV2hGM-CSF eradicated significantly more cells than oHSV1hGM-CSF under the same conditions. For the mouse experiments, it was observed that oHSV2hGM-CSF significantly inhibited the tumor growth. At 15 days after B16R tumor cells inoculation, the tumor volumes of the PBS, oHSV1hGCM-CSF and oHSV2hGM-CSF groups were (374.7 +/- 128.24) mm3, (128.23 +/- 45.32) mm3 (P < 0.05, vs. PBS group) or (10.06 +/- 5.1) mm3 (P < 0.01, vs. PBS group), respectively (mean +/- error). The long term therapeutic effect of oHSV2hGM-CSF on the B16R animal model was evaluated by recording animal survival over 110 days after tumor cells inoculation whereas all the mice in the PBS group died by day 22 (P < 0.01). The anti-tumor mechanism of the newly constructed oHSV2hGM-CSF against B16R cell tumor appeared to include the directly oncolytic activity and the induction of anti-tumor immunity to some degree.
CONCLUSIONThe findings of our study demonstrate that the newly constructed oHSV2hGM-CSF has potent anti-tumor activity in vitro to many tumor cell lines and in vive to the transplanted B16R tumor models.
Animals ; Cell Line, Tumor ; Female ; Gene Deletion ; Genetic Engineering ; Granulocyte-Macrophage Colony-Stimulating Factor ; genetics ; Herpesvirus 2, Human ; genetics ; immunology ; Humans ; Immediate-Early Proteins ; genetics ; metabolism ; Melanoma, Experimental ; pathology ; therapy ; virology ; Mice ; Mice, Inbred C57BL ; Oncolytic Virotherapy ; methods ; Oncolytic Viruses ; genetics ; physiology ; Random Allocation ; Tumor Burden ; Viral Proteins ; genetics ; metabolism ; Xenograft Model Antitumor Assays
4.The potential link between PML NBs and ICP0 in regulating lytic and latent infection of HSV-1.
Shuai WANG ; Jing LONG ; Chun-fu ZHENG
Protein & Cell 2012;3(5):372-382
Herpes simplex virus type 1 (HSV-1) is a common human pathogen causing cold sores and even more serious diseases. It can establish a latent stage in sensory ganglia after primary epithelial infections, and reactivate in response to stress or sunlight. Previous studies have demonstrated that viral immediate-early protein ICP0 plays a key role in regulating the balance between lytic and latent infection. Recently, It has been determined that promyelocytic leukemia (PML) nuclear bodies (NBs), small nuclear sub-structures, contribute to the repression of HSV-1 infection in the absence of functional ICP0. In this review, we discuss the fundamentals of the interaction between ICP0 and PML NBs, suggesting a potential link between PML NBs and ICP0 in regulating lytic and latent infection of HSV-1.
Herpes Simplex
;
virology
;
Herpesvirus 1, Human
;
genetics
;
physiology
;
Humans
;
Immediate-Early Proteins
;
metabolism
;
Intranuclear Inclusion Bodies
;
metabolism
;
virology
;
Leukemia, Promyelocytic, Acute
;
metabolism
;
Ubiquitin-Protein Ligases
;
metabolism
;
Virus Latency
;
physiology
5.SiRNA targeting ICP4 attenuates HSV-1 replication.
Yu-tao LIU ; Bo SONG ; Ya-lun WANG ; Yu-ming XU ; Zhi-qiang HAN ; Xin-yu ZHAO ; Li-jie JIA
Chinese Journal of Virology 2010;26(3):163-169
HSV-1, a neurotropic virus, always leads to severe nervous symptoms. It is hard to completely eradicate the latent viruses after conventional therapy so that recurrence is inevitable. ICP is a key regulator for HSV replication and transcription that determines the cytolytic infection or latent state. In search of new anti-virus strategy targeting HSV-1ICP4, two pairs of siRNA were designed, and a recombinant eukaryotic lentiviral expression plasmid pLKO-puro(r)-hU6-siRNA was constructed. Vero cells were transfected with the designed siRNAs by Lipofectamine 2000 and four stable monoclonal cell lines were established by puromycin screening method. The ICP4 expression at mRNA level was detected with real-time PCR, and the HSV-1 replication was measured with TCID50 assay. SiRNA was shown as an effective way to inhibit the expression of ICP4 in monoclonal cell lines. Meanwhile, HSV-1 replication was significantly inhibited when ICP4 was shut down by siRNA. We conclude that siRNA targeting ICP4 attenuates HSV-1 replication. Further more, multi-site siRNAs show stronger inhibitory effect on viral replication, which may be an effective and feasible approach for biological anti-viral drugs.
Animals
;
Base Sequence
;
Cercopithecus aethiops
;
Genetic Therapy
;
Genetic Vectors
;
genetics
;
Herpesvirus 1, Human
;
physiology
;
Humans
;
Immediate-Early Proteins
;
deficiency
;
genetics
;
RNA Interference
;
RNA, Messenger
;
genetics
;
metabolism
;
RNA, Small Interfering
;
genetics
;
Vero Cells
;
Virus Replication
;
genetics
6.High glucose promotes the CTGF expression in human mesangial cells via serum and glucocorticoid-induced kinase 1 pathway.
Quansheng, WANG ; Ali, ZHANG ; Renkang, LI ; Jianguo, LIU ; Jiwen, XIE ; Anguo, DENG ; Yuxi, FENG ; Zhonghua, ZHU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2008;28(5):508-12
The role of serum and glucocorticoid-induced kinase 1 (SGK1) pathway in the connective tissue growth factor (CTGF) expression was investigated in cultured human mesangial cells (HMCs) under high glucose. By using RT-PCR and Western blot, the effect of SGK1 on the CTGF expression in HMCs under high glucose was examined. Overexpression of active SGK1 in HMCs transfected with pIRES2-EGFP-S422D hSGK1 (SD) could increase the expression of phosphorylated SGK1 and CTGF as compared with HMCs groups transfected with pIRES2-EGFP (FP) under high glucose or normal glucose. Overexpression of inactive SGK1 in HMCs transfected with pIRES2-EGFP-K127N hSGK1 (KN) could decrease phosphorylated SGK1 and CTGF expression as compared with HMCs groups transfected with FP under high glucose. In conclusion, these results suggest that high glucose-induced CTGF expression is mediated through the active SGK1 in HMCs.
Cells, Cultured
;
Connective Tissue Growth Factor/genetics
;
Connective Tissue Growth Factor/*metabolism
;
Glucose/*pharmacology
;
Immediate-Early Proteins/metabolism
;
Immediate-Early Proteins/*physiology
;
Mesangial Cells/cytology
;
Mesangial Cells/*metabolism
;
Protein-Serine-Threonine Kinases/metabolism
;
Protein-Serine-Threonine Kinases/*physiology
;
Signal Transduction/drug effects
7.Expression and role of connective tissue growth factor mRNA in premature rats with hyperoxia-induced chronic lung disease.
Chinese Journal of Contemporary Pediatrics 2007;9(5):449-452
OBJECTIVETo investigate the role of connective tissue growth factor (CTGF) in pulmonary fibrosis in rats with hyperoxia-induced chronic lung disease (CLD).
METHODSEighty premature rats were randomly exposed to hyperxia (FiO2=0.90) or room air (control group) (n=40 each). CLD was induced by hyperoxia exposure. The expression of CTGF mRNA and transforming growth factor-beta 1 (TGF-beta 1), the levels of type I collagen and the proliferating cell nuclear antigen (PCNA) index were assayed with enzyme linked immunoadsorbent (ELISA), immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR) on days 1, 3, 7, 14 and 21 after exposure.
RESULTSThere were no differences in the levels of type I collagen, PCNA index, TGF-beta 1 protein and CTGF mRNA between the CLD and the control groups within 3 days after exposure. In the CLD group, the expression of TGF-beta 1 protein increased on the 7th day, remained at a higher level on the 14th and 21st day after exposure; the higher levels of type I collagen, PCNA index and CTGF mRNA were detected on the 14th day and peaked on the 21st day after exposure when comparing the control group. CTGF mRNA expression was positively correlated with type I collagen levels in the CLD group (gamma=0.89, P < 0.01).
CONCLUSIONSThe expression of CTGF in lung tissues is associated with pulmonary fibrosis in CLD rats.
Animals ; Animals, Newborn ; Chronic Disease ; Collagen Type I ; analysis ; Connective Tissue Growth Factor ; Hyperoxia ; complications ; Immediate-Early Proteins ; genetics ; physiology ; Intercellular Signaling Peptides and Proteins ; genetics ; physiology ; Proliferating Cell Nuclear Antigen ; analysis ; Pulmonary Fibrosis ; etiology ; RNA, Messenger ; analysis ; Rats ; Rats, Sprague-Dawley ; Transforming Growth Factor beta1 ; analysis
8.Antisense c-fos oligonucleotides-induced myopia in guinea pigs.
Shuang-Zhen LIU ; Xin WEI ; Jie-Yue WANG ; Xiao-Ying WU ; Xing-Ping TAN
Journal of Central South University(Medical Sciences) 2007;32(1):132-137
OBJECTIVE:
To characterize the antisense c-fos oligonucleotides that control the expression of immediate-early gene c-fos in retina in order to better understand the mechanism by which antisense c-fos oligonucleotides induced myopia. In this study the signal transduction in the pathway linking visual experience and the regulation of the eye's growth was investigated.
METHODS:
Thirty-one 3-week guinea pigs were assigned into 3 groups: antisense and sense c-fos oligonucleotides were intravitreally injected every 3 days to the eyes of the experimental guinea pigs at different concentrations; and saline vehicle to control guinea pigs in the same way. The refraction and axial length of the eyes were measured before and after the treatment, and the immediate-early gene c-fos expression in the retina was quantified by immunohistochemistry and RT-PCR.
RESULTS:
The moderate myopia was induced in high (1 nmol) and low (0.1 nmol) level of antisense c-fos oligonucleotide intravitreous injection (-5.425 D and -5.575 D, respectively) compared with the control ateral eyes. The refraction and axial length of the treated eyes increased, and the expression of immediate-early gene c-fos decreased significantly in the antisense c-fos oligonucleotides intravitreously injected eyes compared with the sense c-fos oligonucleotide intravitreously and saline vehicle injected eyes (P<0.01). The refraction and axial length were of no statistically significant differences among the sense c-fos oligonucleotides-treated eyes and saline-treated eyes and non-treated eyes (P>0.05).
CONCLUSION
The obvious myopia can be induced by antisense c-fos oligonucleotides in guinea pigs; antisense c-fos oligonucleotides inhibit c-fos expression in the retina. Immediate-early gene c-fos may be a potential factor in the prevention of myopia and plays an important role in the signal transduction of the retina.
Animals
;
Genes, Immediate-Early
;
genetics
;
Guinea Pigs
;
Immunohistochemistry
;
Microinjections
;
Myopia
;
chemically induced
;
genetics
;
physiopathology
;
Oligonucleotides, Antisense
;
administration & dosage
;
genetics
;
toxicity
;
Proto-Oncogene Proteins c-fos
;
biosynthesis
;
genetics
;
RNA, Messenger
;
genetics
;
metabolism
;
Random Allocation
;
Retina
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
Signal Transduction
;
physiology
9.The role of connective tissue growth factor, transforming growth factor beta1 and Smad signaling pathway in cornea wound healing.
Xin-yi WU ; Yong-mei YANG ; Hui GUO ; Yuan CHANG
Chinese Medical Journal 2006;119(1):57-62
Animals
;
Collagen Type I
;
genetics
;
Connective Tissue Growth Factor
;
Corneal Injuries
;
Fibronectins
;
analysis
;
Immediate-Early Proteins
;
analysis
;
genetics
;
physiology
;
Immunohistochemistry
;
Intercellular Signaling Peptides and Proteins
;
analysis
;
genetics
;
physiology
;
RNA, Messenger
;
analysis
;
Rabbits
;
Signal Transduction
;
physiology
;
Smad Proteins
;
physiology
;
Transforming Growth Factor beta
;
analysis
;
genetics
;
physiology
;
Transforming Growth Factor beta1
;
Wound Healing
;
physiology
10.Connective tissue growth factor is associated with the early renal hypertrophy in uninephrectomized diabetic rats.
Bi-cheng LIU ; Hai-quan HUANG ; Dong-dong LUO ; Kun-ling MA ; Dian-ge LIU ; Hong LIU
Chinese Medical Journal 2006;119(12):1010-1016
BACKGROUNDRenal hypertrophy has been regarded as the early feature of diabetic nephropathy (DN), which may eventually lead to proteinuria and renal fibrosis. However, the exact mechanism of renal hypertrophy is still unclear. The aim of this study was to investigate the possible association of connective tissue growth factor (CTGF) with renal hypertrophy in uninephrectomized diabetic rats.
METHODSSeventy-two Sprague-Dawley (SD) rats were randomly divided into two groups: control group (group C, n = 32) and diabetic nephropathy (group DN, n = 40). Each group was re-divided into 4 subgroups according to the experimental period. The rats were sacrificed at 1, 2, 4, and 8 weeks respectively after induction of diabetes. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ) after rats had received uninephrectomy. Blood glucose (BG), body weight (BW), 24-h urinary albumin excretion (24hUalb), kidney weight (KW), KW/BW, glomerular tuft area (AG), glomerular tuft volume (VG), proximal tubular area (AT) at each time point, the width of glomerular basement membrane (GBM) and tubular basement membrane (TBM) at week 8 were measured when the rats were sacrificed. Renal expression of CTGF and p27kip1 were detected by immunohistochemical staining. The relationship between CTGF expression and increasing of VG and AT was analyzed.
RESULTSThere was a significant increase of 24hUalb, KW, and KW/BW from week 1 onward in diabetic rats compared to those in group C (P < 0.05, respectively), diabetic rats also had a significant increase of AG, VG, and AT from week 1 onward. It was also shown that diabetic rats had a thickening of GBM [(245.7 +/- 103.0) nm vs (121.8 +/- 19.1) nm, P < 0.01] and TBM [(767.7 +/- 331.1) nm vs (293.0 +/- 110.5) nm, P < 0.01] at week 8. There was a weak expression for CTGF and p27kip1 in normal glomeruli and tubuli, while a significant increasing expression of CTGF and p27kip1 was found in glomeruli and tubuli in diabetic kidney from week 1 onward (P < 0.05, respectively), and the extent of CTGF expression was positively correlated with AG (r = 0.92, P < 0.05), VG (r = 0.86, P < 0.05), AT (r = 0.94, P < 0.01) and positively correlated with the expression of p27kip1 (r = 0.96, P < 0.01).
CONCLUSIONThe expression of CTGF increases in diabetic rat kidney at the early stage, which might be an important mediator of renal hypertrophy through arresting cell cycling.
Albuminuria ; etiology ; Animals ; Connective Tissue Growth Factor ; Cyclin-Dependent Kinase Inhibitor p27 ; analysis ; Diabetes Mellitus, Experimental ; pathology ; Hypertrophy ; Immediate-Early Proteins ; analysis ; physiology ; Intercellular Signaling Peptides and Proteins ; analysis ; physiology ; Kidney ; pathology ; Male ; Nephrectomy ; Rats ; Rats, Sprague-Dawley ; Streptozocin

Result Analysis
Print
Save
E-mail