1.A Case of Metastatic Non-small Cell Lung Cancer with Rare BRAF p.L485_T488delinsF Mutation Treated with Dabrafenib and Trametinib.
Yunfei WANG ; Wen ZHAO ; Chuang YANG ; Rongyu ZHANG ; Chengjun WANG ; Chunyan HAN ; Jisheng LI
Chinese Journal of Lung Cancer 2025;28(8):638-643
The v-Raf murine sarcoma viral oncogene homolog B (BRAF) gene is one of the most critical proto-oncogenes and functions as a key regulator in the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway. The incidence of BRAF mutations in non-small cell lung cancer (NSCLC) patients ranges from 1.5% to 5.5%, with BRAF V600 mutations accounting for approximately 30%-50% of all BRAF mutations, among which BRAF V600E represents the most prevalent mutation type. Currently, the combination of Dabrafenib and Trametinib has been recommended as first-line therapy for BRAF V600-mutant NSCLC by multiple domestic and international guidelines including National Comprehensive Cancer Network (NCCN), European Society of Medical Oncology (ESMO), and Chinese Society of Clinical Oncology (CSCO). However, there are no clear targeted treatment recommendations for BRAF non-V600 mutations. Although case reports suggest that Dabrafenib combined with Trametinib may be effective for patients with BRAF non-V600 mutations, the efficacy and safety require further validation due to limited sample size and lack of large-scale clinical trial data. This article reports a case of NSCLC with a rare BRAF insertion and deletion mutation that responded well to the treatment of Dabrafenib in combination with Trametinib, aiming to enhance clinicians' understanding of such NSCLC cases with extremely rare mutation and provide a reference for future treatment strategies.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Imidazoles/administration & dosage*
;
Lung Neoplasms/pathology*
;
Mutation
;
Neoplasm Metastasis
;
Oximes/administration & dosage*
;
Proto-Oncogene Mas
;
Proto-Oncogene Proteins B-raf/genetics*
;
Pyridones/administration & dosage*
;
Pyrimidinones/administration & dosage*
2.Bisphosphonates-related osteonecrosis of the jaw: A case report.
Ju YANG ; Yue LIU ; Chunna QU ; Jianbin SUN ; Tianying LI ; Lianjie SHI
Journal of Peking University(Health Sciences) 2025;57(2):388-392
Osteonecrosis of the mandible is also called avascular necrosis of the jaw, and it is a rare complication of bisphosphonates. It is characterized with pain, swelling, exposure of bone, local infection and pathologic fractures of the jaw. With the widespread usage of bisphosphonates in bone metastasis of malignant tumors and osteoporosis, this rare complication has received more attention in recent years. Here, we reported a case of bisphosphonates-related osteonecrosis of the jaw (BRONJ) caused by intravenous zoledronic acid for osteoporosis. A 62-year-old female patient with 7-year history of Sjögren's syndrome and 3-year history of osteoporosis developed BRONJ after 3-year treatment of zoledronic acid. Two months before she went to the Peking University International Hospital, she visited the dentist for periodontal purulent secretion and extracted one tooth from the right mandible. However, the condition was not improved and she felt persistent pain and swelling in the right mandible. Hence, she received repeated root curettage, but there was no improvement. Finally, she was diagnosed with osteonecrosis of the mandible based on the digital volume tomography scan, which showed right mandibular osteonecrosis bone destruction. She underwent surgical debridement of the necrotic bone and administered intravenous antibio-tics at the Peking University International Hospital. Histopathological analysis of the bone biopsy further confirmed the diagnosis of BRONJ. Her condition was improved successfully during a 3-year follow-up. Osteonecrosis of the mandible become more common with the increased use of bisphosphonates. Recent study has reported that osteonecrosis of the mandible is more likely to occur in patients with Sjögren's syndrome. In addition, age, long-term and irregular administration of glucocorticoids, irregular oral examination and treatment also might be the risk factors in the pathogenesis of osteonecrosis of the mandible. For the elder osteoporosis patients who would receive or had received bisphosphonate-related drugs, oral health status and the disease states associated with necrosis of the mandible such as Sjögren's syndrome should be comprehensively measured and fully evaluated during the whole process. Furthermore, to better understand and prevent or reduce the occurrence of this complication, we reviewed the patho-genesis, diagnosis, treatment, and prevention of BRONJ.
Humans
;
Female
;
Middle Aged
;
Bisphosphonate-Associated Osteonecrosis of the Jaw/etiology*
;
Diphosphonates/administration & dosage*
;
Zoledronic Acid
;
Imidazoles/administration & dosage*
;
Bone Density Conservation Agents/adverse effects*
;
Osteoporosis/drug therapy*
3.Exploring the mechanism of HIV infection on T lymphocyte mitochondrial damage based on MAPK pathway.
Yong DENG ; Cheng CHEN ; Zhong CHEN ; Gang XIAO ; Guoqiang ZHOU ; Fang ZHENG ; Ning WANG
Chinese Journal of Cellular and Molecular Immunology 2024;40(12):1096-1103
Objective To clarify the mechanism that HIV infection mediates mitochondrial damage of CD4+ T lymphocytes (CD4+ T cells) through mitogen-activated protein kinase (MAPK) pathway. Methods From October 1st, 2022 to March 31st, 2023, 47 HIV-infected people who received antiretroviral therapy (ART) for 4 years were recruited, including 22 immune non-responders (INR) and 25 responders (IR); and 26 sex and age-matched control participants (HC) who were negative for HCV, HBV, and HIV infections. The immune parameters were analyzed by flow cytometry. Finally, peripheral blood mononuclear cells (PBMCs) from HC or HIV patients were treated with MAPK pathway inhibitor SB203580, and the changes of mitochondrial function of CD4+ T cells were observed. Results Compared with HC group, the proportion of CD4+ T cells in PBMCs in INR group and IR group was significantly lower, and the proportion of CD4+ T cells in PBMCs in INR group was significantly lower than that in IR group. In addition, the proportion of naive (CD45RA+CD27+)T cells in PBMCs in INR group was significantly lower than that in HC group and IR group. Compared with HC group and IR group, the proportions of CD4+PD-1+, CD4+Av+ and CD4+MO+ in PBMCs in INR group and the proportions of CD45RA+CD27+PD-1+, CD45RA+CD27+Av+, CD45RA+CD27+MO+ in CD4+ T cell subsets increased significant. Compared with HC-con group, the basal respiration, maximal respiration and adenosine triphosphate(ATP) production of CD4+ T cells in HIV-con group decreased significantly, and JC-1 (green/red) in CD4+ T cells increased significantly. Compared with HIV-con group, the basal respiration, maximal respiration, ATP production and respiratory potential of CD4+ T cells in HIV-SB203580 group increased significantly, and the JC-1 (green/red) in CD4+ T cells decreased significantly. Conclusion Abnormal activation of the MAPK signaling pathway is observed in HIV patients receiving ART treatment, especially in CD4+ T cells of INR patients, which may lead to impaired mitochondrial function and abnormal CD4+ T cell homeostasis.
Humans
;
HIV Infections/immunology*
;
Male
;
Mitochondria/drug effects*
;
Female
;
CD4-Positive T-Lymphocytes/metabolism*
;
Adult
;
Middle Aged
;
MAP Kinase Signaling System/drug effects*
;
Pyridines/pharmacology*
;
Imidazoles/pharmacology*
;
Leukocytes, Mononuclear/immunology*
4.GSK484, a PAD4 inhibitor, improves endothelial dysfunction in mice with sepsis-induced lung injury by inhibiting H3Cit expression.
Xiaofei SU ; Lin LI ; Jingrong DAI ; Bao XIAO ; Ziqi JIN ; Bin LIU
Journal of Southern Medical University 2024;44(12):2396-2403
OBJECTIVES:
To investigate the inhibitory effect of GSK484, a PAD4 inhibitor, on H3Cit expression following sepsis and its effects for improving sepsis-induced endothelial dysfunction.
METHODS:
Eighteen C57BL/6 mice were randomized into sham-operated group, sepsis model group and GSK484 treatment group (n=6), and in the latter two groups, models of sepsis were established by cecal ligation and puncture (CLP). The mice in GSK484 treatment group were given an intraperitoneal injection of GSK484 (4 mg/kg) on the second day following the surgery. Twenty-four hours after the injection, the mice were euthanized for measurement of serum levels of VEGF, ESM-1, IL-6 and IL-1β using ELISA. Lung tissue pathology was observed with HE staining, and pulmonary expressions of F-actin, VE-cadherin, ZO-1 and H3Cit proteins were detected using immunofluorescence staining and Western blotting. In primary cultured of mouse lung microvascular endothelial cells, the effect of stimulation with LPS (10 μg/mL) for 24 h on tube formation, proliferation, apoptosis and expressions of VEGF, ESM-1, IL-6 and IL-1β were assessed using CCK-8 assay, flow cytometry and ELISA.
RESULTS:
Compared to the sham-operated mice, the septic mice exhibited significant lung tissue pathologies characterized by vascular congestion, alveolar rupture, edema, and neutrophil infiltration. Serum levels of IL-6, IL-1β, VEGF, and ESM-1 were elevated, pulmonary expressions of F-actin, VE-cadherin, and ZO-1 were decreased, and H3Cit expression was increased significantly in the septic mice. GSK484 treatment effectively mitigated these changes in the septic mice. The LPS-stimulated endothelial cells showed increased productions of IL-6, IL-1β, VEGF and ESM-1, which were significantly reduced after treatment with 2.5 μmol/L GSK484.
CONCLUSIONS
GSK484 treatment effectively suppresses H3Cit expression in septic mice to ameliorate sepsis-induced endothelial dysfunction.
Animals
;
Sepsis/drug therapy*
;
Mice
;
Mice, Inbred C57BL
;
Lung Injury/drug therapy*
;
Endothelial Cells/drug effects*
;
Interleukin-6/metabolism*
;
Protein-Arginine Deiminase Type 4/metabolism*
;
Lung/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Interleukin-1beta/metabolism*
;
Disease Models, Animal
;
Cadherins/metabolism*
;
Apoptosis/drug effects*
;
Imidazoles
;
Antigens, CD
6.Investigation on the growth factor regulatory network of dermal fibroblasts in mouse full-thickness skin defect wounds based on single-cell RNA sequencing.
Li Xiang SUN ; Shuai WU ; Xiao Wei ZHANG ; Wen Jie LIU ; Ling Juan ZHANG
Chinese Journal of Burns 2022;38(7):629-639
Objective: To explore the heterogeneity and growth factor regulatory network of dermal fibroblasts (dFbs) in mouse full-thickness skin defect wounds based on single-cell RNA sequencing. Methods: The experimental research methods were adopted. The normal skin tissue from 5 healthy 8-week-old male C57BL/6 mice (the same mouse age, sex, and strain below) was harvested, and the wound tissue of another 5 mice with full-thickness skin defect on the back was harvested on post injury day (PID) 7. The cell suspension was obtained by digesting the tissue with collagenase D and DNase Ⅰ, sequencing library was constructed using 10x Genomics platform, and single-cell RNA sequencing was performed by Illumina Novaseq6000 sequencer. The gene expression matrices of cells in the two kinds of tissue were obtained by analysis of Seurat 3.0 program of software R4.1.1, and two-dimensional tSNE plots classified by cell group, cell source, and gene labeling of major cells in skin were used for visual display. According to the existing literature and the CellMarker database searching, the expression of marker genes in the gene expression matrices of cells in the two kinds of tissue was analyzed, and each cell group was numbered and defined. The gene expression matrices and cell clustering information were introduced into CellChat 1.1.3 program of software R4.1.1 to analyze the intercellular communication in the two kinds of tissue and the intercellular communication involving vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and fibroblast growth factor (FGF) signal pathways in the wound tissue, the relative contribution of each pair of FGF subtypes and FGF receptor (FGFR) subtypes (hereinafter referred to as FGF ligand receptor pairs) to FGF signal network in the two kinds of tissue, and the intercellular communication in the signal pathway of FGF ligand receptor pairs with the top 2 relative contributions in the two kinds of tissue. The normal skin tissue from one healthy mouse was harvested, and the wound tissue of one mouse with full-thickness skin defect on the back was harvested on PID 7. The multiple immunofluorescence staining was performed to detect the expression and distribution of FGF7 protein and its co-localized expression with dipeptidyl peptidase 4 (DPP4), stem cell antigen 1 (SCA1), smooth muscle actin (SMA), and PDGF receptor α (PDGFRα) protein. Results: Both the normal skin tissue of healthy mice and the wound tissue of full-thickness skin defected mice on PID 7 contained 25 cell groups, but the numbers of cells in each cell group between the two kinds of tissue were different. Genes PDGFRα, platelet endothelial cell adhesion molecule 1, lymphatic endothelial hyaluronic acid receptor 1, receptor protein tyrosine phosphatase C, keratin 10, and keratin 79 all had distinct distributions on two-dimensional tSNE plots, indicating specific cell groups respectively. The 25 cell groups were numbered by C0-C24 and divided into 9 dFb subgroups and 16 non-dFb groups. dFb subgroups included C0 as interstitial progenitor cells, C5 as adipose precursor cells, and C13 as contractile muscle cells related fibroblasts, etc. Non-dFb group included C3 as neutrophils, C8 as T cells, and C18 as erythrocytes, etc. Compared with that of the normal skin tissue of healthy mice, the intercellular communication in the wound tissue of full-thickness skin defected mice on PID 7 was more and denser, and the top 3 cell groups in intercellular communication intensity were dFb subgroups C0, C1, and C2, of which all communicated with other cell groups in the wound tissue. In the wound tissue of full-thickness skin defected mice on PID 7, VEGF signals were mainly sent by the dFb subgroup C0 and received by vascular related cell groups C19 and C21, PDGF signals were mainly sent by peripheral cells C14 and received by multiple dFb subgroups, EGF signals were mainly sent by keratinocyte subgroups C9 and C11 and received by the dFb subgroup C0, and the main sender and receiver of FGF signals were the dFb subgroup C6. In the relative contribution rank of FGF ligand receptor pairs to FGF signal network in the normal skin tissue of healthy mice and the wound tissue of full-thickness skin defected mice on PID 7, FGF7-FGFR1 was the top 1, and FGF7-FGFR2 or FGF10-FGFR1 was in the second place, respectively; compared with those in the normal skin tissue, there was more intercellular communication in FGF7-FGFR1 signal pathway, while the intercellular communication in FGF7-FGFR2 and FGF10-FGFR1 signal pathways decreased slightly or did not change significantly in the wound tissue; the intercellular communication in FGF7-FGFR1 signal pathway in the wound tissue was stronger than that in FGF7-FGFR2 or FGF10-FGFR1 signal pathway; in the two kinds of tissue, FGF7 signal was mainly sent by dFb subgroups C0, C1, and C2, and received by dFb subgroups C6 and C7. Compared with that in the normal skin tissue of healthy mouse, the expression of FGF7 protein was higher in the wound tissue of full-thickness skin defected mouse on PID 7; in the normal skin tissue, FGF7 protein was mainly expressed in the skin interstitium and also expressed in the white adipose tissue near the dermis layer; in the two kinds of tissue, FGF7 protein was co-localized with DPP4 and SCA1 proteins and expressed in the skin interstitium, co-localized with PDGFRα protein and expressed in dFbs, but was not co-localized with SMA protein, with more co-localized expression of FGF7 in the wound tissue than that in the normal skin tissue. Conclusions: In the process of wound healing of mouse full-thickness skin defect wound, dFbs are highly heterogeneous, act as potential major secretory or receiving cell populations of a variety of growth factors, and have a close and complex relationship with the growth factor signal pathways. FGF7-FGFR1 signal pathway is the main FGF signal pathway in the process of wound healing, which targets and regulates multiple dFb subgroups.
Animals
;
Dipeptidyl Peptidase 4
;
Epidermal Growth Factor
;
Fibroblasts
;
Imidazoles
;
Ligands
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Receptor, Platelet-Derived Growth Factor alpha
;
Sequence Analysis, RNA
;
Skin Abnormalities
;
Soft Tissue Injuries
;
Spinocerebellar Ataxias
;
Sulfonamides
;
Thiophenes
;
Vascular Endothelial Growth Factor A
7.Optimization of a cucurbit6uril-based real-time label-free method for analyzing the activity of ornithine decarboxylase.
Jing WANG ; Xiangchen LIU ; Hongyan MA ; Qiang CHEN ; Sen LIU
Chinese Journal of Biotechnology 2021;37(8):2903-2914
Ornithine decarboxylase (ODC) is a key enzyme in the biosynthetic pathway of polyamines and catalyzes the decarboxylation of ornithine to produce putrescine. Inhibition of ODC activity is a potential approach for the prevention and treatment of many diseases including cancer, as the expression levels and the activities of ODC in many abnormal cells and tumor cells are generally higher than those of normal cells. The discovery and evaluation of ODC inhibitors rely on the monitoring of the reaction processes catalyzed by ODC. There are several commonly used methods for analyzing the activity of ODC, such as measuring the yield of putrescine by high performance liquid chromatography, or quantifying the yield of isotope labelled carbon dioxide. However, the cumbersome operation and cost of these assays, as well as the difficulty to achieve high-throughput and real-time detection, hampered their applications. In this work, we optimized a real-time label-free method for analyzing the activity of ODC based on the macromolecule cucurbit[6]uril (CB6) and a fluorescent dye, DSMI (trans-4-[4-(dimethylamino) styryl]-1-methylpyridinium iodide). Finally, the optimized method was used to determine the activities of different ODC inhibitors with different inhibition mechanisms.
Bridged-Ring Compounds
;
Imidazoles
;
Ornithine
;
Ornithine Decarboxylase
;
Ornithine Decarboxylase Inhibitors
;
Putrescine
8.Olmesartan-associated Enteropathy.
Long ZOU ; Qiang WANG ; Yue LI ; Ai-Ming YANG
Acta Academiae Medicinae Sinicae 2021;43(6):986-990
Olmesartan,an angiotensin Ⅱ receptor blocker,is a commonly used antihypertensive drug.Several case reports and cohort studies in recent years have described a severe gastrointestinal adverse event with chronic diarrhea,intestinal malabsorption,and weight loss after the administration of olmesartan.In such cases,the patients recovered after discontinuing olmesartan.This adverse effect is called olmesartan-associated enteropathy(OAE).This article reviews the potential pathogenesis and clinical characteristics of OAE,which broadens the disease spectrum for the differential diagnosis of chronic diarrhea and intestinal malabsorption.
Angiotensin Receptor Antagonists
;
Humans
;
Imidazoles
;
Intestinal Diseases/diagnosis*
;
Tetrazoles/adverse effects*
9.High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors.
Yao ZHAO ; Xiaoyu DU ; Yinkai DUAN ; Xiaoyan PAN ; Yifang SUN ; Tian YOU ; Lin HAN ; Zhenming JIN ; Weijuan SHANG ; Jing YU ; Hangtian GUO ; Qianying LIU ; Yan WU ; Chao PENG ; Jun WANG ; Chenghao ZHU ; Xiuna YANG ; Kailin YANG ; Ying LEI ; Luke W GUDDAT ; Wenqing XU ; Gengfu XIAO ; Lei SUN ; Leike ZHANG ; Zihe RAO ; Haitao YANG
Protein & Cell 2021;12(11):877-888
A new coronavirus (SARS-CoV-2) has been identified as the etiologic agent for the COVID-19 outbreak. Currently, effective treatment options remain very limited for this disease; therefore, there is an urgent need to identify new anti-COVID-19 agents. In this study, we screened over 6,000 compounds that included approved drugs, drug candidates in clinical trials, and pharmacologically active compounds to identify leads that target the SARS-CoV-2 papain-like protease (PLpro). Together with main protease (M
Antiviral Agents/therapeutic use*
;
Binding Sites
;
COVID-19/virology*
;
Coronavirus Papain-Like Proteases/metabolism*
;
Crystallography, X-Ray
;
Drug Evaluation, Preclinical
;
Drug Repositioning
;
High-Throughput Screening Assays/methods*
;
Humans
;
Imidazoles/therapeutic use*
;
Inhibitory Concentration 50
;
Molecular Dynamics Simulation
;
Mutagenesis, Site-Directed
;
Naphthoquinones/therapeutic use*
;
Protease Inhibitors/therapeutic use*
;
Protein Structure, Tertiary
;
Recombinant Proteins/isolation & purification*
;
SARS-CoV-2/isolation & purification*
10.Effect of 5-aminoimidazole-4-formamide Ribonucleotide Combined with Interferon on Chronic Myeloid Leukemia K562 Cells.
Hong-Juan WANG ; Rui LIU ; Yuan-Yuan ZHANG ; Fan-Mei GE
Journal of Experimental Hematology 2020;28(6):1892-1898
OBJECTIVE:
To study the effect of 5-aminoimidazole-4-formamide ribonucleotide (AICAR) combined with interferon (IFN-α-2b) on the proliferation and apoptosis of chronic myeloid leukemia K562 cells, and explore its possible mechanism.
METHODS:
CCK-8 method was used to detect the inhibition of cell proliferation. Wright Giemsa method was used to stain and cell morphology was observed by light microscopy. FITC Annexin V/PI double staining method was used to analyze the change of apoptosis rate. Immunocytochemistry method was used to detect the expression of wild-type P53 protein.
RESULTS:
Different concentration of AICAR was inhibitory effect on K562 cells at different time point of action for 24 h, 48 h, and 72 h, and the inhibition was time and dose-dependent (r=0.71, r=0.84). The combination of AICAR and IFN-α-2b could effectively inhibit the proliferation and promote apoptosis of K562 cells. The inhibition rate of K562 cells was (45.26±2.54)%, and the early apoptosis rate was (33.72±0.23)%, which was statistically significantly different from the control group, AICAR or IFN-ɑ-2b alone (P<0.05). The combination of two drugs promoted the expression of wild-type p53 protein.
CONCLUSION
AICAR and/or IFN-ɑ-2b can inhibit the cell proliferation and promote the apoptosis of K562 cells. The combination of two drugs shows synergistic antitumor effect, and its mechanism may be related to the promotion of high expression of wild-type p53 protein.
Apoptosis
;
Cell Proliferation
;
Formamides
;
Humans
;
Imidazoles
;
Interferons
;
K562 Cells
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive
;
Ribonucleotides/pharmacology*

Result Analysis
Print
Save
E-mail